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Abstract. In many practical situations when we process 1-D data, the
method of F-transform turned out to be very useful. In this method, we
can use either triangular membership functions or more complex ones.
Because this method has been so successful in 1-D applications, a natural
idea is to extend it to functions de�ned on 2-D and higher-dimensional
domains � e.g., to images. This method allows natural generalization to
rectangular domains, where it indeed turned out to be very e�ective.
A recent paper showed that it can extended to more general domains
� e.g., to triangular domains and to more general domains that are di-
vided into triangular domains by triangulation. Interestingly, while all
1-D membership functions can be extended to the rectangular domains,
the current extension to triangular and more general domains was pro-
duced only for triangular membership functions. In this paper, we show
that this restriction is not accidental: a natural extension of F-transform
to triangular domains is only possible for triangular membership func-
tions. This may explain why such membership functions are often very
e�ective.

Keywords: F-transform· Triangular and triangulated domains · Trian-
gular membership functions.

1 Introduction

1-D and multi-D F-transform: outline. In many practical situations when
we process 1-D data, the method of F-transform turned out to be very useful;
see, e.g., [3, 4].

In this method, we can use both piecewise-linear (e.g., triangular) member-
ship functions, as well as more complex ones. Because this method has been so
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successful in 1-D applications, a natural idea is to extend it to functions de�ned
on 2-D and higher-dimensional domains � e.g., to images.

This method allows natural generalization to rectangular domains, where it
indeed turned out to be very e�ective; see, e.g., [2, 6]. A recent paper [5] showed
that it can extended to more general domains � e.g., to triangular domains and to
more general domains that are divided into triangular domains by triangulation.

F-transform for triangular domains: challenge. Interestingly:

� while all 1-D membership functions can be extended to the rectangular do-
mains,

� the current extension to triangular and more general domains was produced
only for triangular membership functions.

What we do in this paper. In this paper, we show that this restriction is
not accidental: a natural extension of f-transform to triangular domains is only
possible for triangular membership functions.

This may explain why such membership functions are often very e�ective.

How this paper is structured. In Section 2, we brie�y remind the readers
about 1-D F-transform. In Section 3, we explain the main ideas behind extending
1-D F-transform to triangular domains. Finally, in Section 4, we explain our
main result: that extension to triangular domains is only possible for triangular
membership functions.

2 1-D F-transform: a brief reminder

In many practical situations when we process 1-D data x(t), t ∈ [0, T ], the
method of F-transforms turned out to be very useful.

In this method, we divide the interval [0, T ] into several subintervals [t0, t1],
. . . , [tn−1, tn] of equal length, and select continuous membership functions A0(t),
A1(t), . . . , An−1(t), An(t) each of which Ai(i) is equal to 0 outside the interval
[ti−1, ti+1] and whose sum is equal to 1. These functions may be triangular, or
they may be more complex. Usually, with the exception of the �rst and the last
of these functions A0(t) and An(t), all these functions can be obtained from each
other by shift: Ai(t− ti) = Aj(t− tj).

Then, we replace the original signal x(t) with the values

Fi =

∫
Ai(t) · x(t) dt∫

Ai(t) dt
.

These values F0, . . . , Fn form what is known as F-transform of the original signal.
To form these values, we take the weighted average of the original signal � and
thus, drastically decrease the random noise component of the measured signal.
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Based on the F-transform, we can reasonably accurately reconstruct the orig-
inal signal by applying the inverse transform:

x(t) =

n∑
i=0

Fi ·Ai(t).

3 Main Idea Behind Extending 1-D F-Transform to

Triangular Domains

To describe the desired extension, let us �rst reformulate 1-D trans-

form in a more general form. On the local level, when we only consider the
functions on a single subinterval [ti, ti+1], the above description of 1-D transform
becomes simpli�ed. Namely, on each such subinterval, we have only two non-zero
membership functions Ai(t) and Ai+1(t) (that add up to 1):

� the function Ai(t) that is equal to 1 at one of the endpoints of the subinterval,
when t = ti and to 0 at the other endpoint, when t = ti+1, and

� the function Ai+1(t) that is equal to 1 at the endpoint t = ti+1 and to 0 at
the endpoint t = ti.

Since all the functions Ai(t) are obtained from each other by a shift, to describe
all the functions Ai(t), it is su�cient to describe two basic functions a(s) and
b(s) that transform interval [0, 1] into itself, and that transform 0 into 0 and

1 into 1. For this purpose, we can take a(s)
def
= Ai+1(ti + s · (ti+1 − ti)) and

b(s)
def
= Ai(ti+1 − s · (ti+1 − ti)). In terms of these functions, the functions

Ai+1(t) and Ai(t) can be obtained by applying a linear transformation from
[0, 1] to, correspondingly, interval [ti, ti+1] and to the same interval with the
opposite direction � which we will denote by [ti+1, ti]. Namely we have

Ai+1(t) = a

(
t− ti

ti+1 − ti

)
and

Ai(t) = b

(
ti+1 − t

ti+1 − ti

)
.

In particular, triangular membership function corresponds to a(s) = b(s) = s.
In terms of these basic functions, the condition Ai(t)+Ai+1(t) = 1 takes the

following simpli�ed form:
a(s) + b(1− s) = 1. (1)

This condition is, of course, always satis�ed in the case of triangular membership
functions, when a(s) = b(s) = s.

The above reformulation leads to a natural extension of 1-D F-

transform to a triangular domain. The above reformulation uses the fact
that an interval has two endpoints. For each of these two endpoints, we formed
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a membership function that is equal to 1 in the selected endpoint and equal
to 0 at the other endpoint. This provides the values of these two membership
functions at both endpoints of the interval. To get the values of each of the two
membership functions at a point P inside the interval, we use two basic functions
a(s) and b(s) de�ned on the basic interval [0, 1] for which a(0) = b(0) = 0 and
a(1) = b(1) = 1.

For each of the two desired membership functions m and for each point P ,
we take m(P ) = a(s) (or, correspondingly, m(P ) = b(s)), where s = L(P ) for a
linear transformation L that:

� maps the point s = 0 (where the basic function has value 0) into the point
where the desired membership function has the value 0, and

� maps the point s = 1 (where the basic function has value 1) into the point
where the desired membership function has the value 1.

Of course, a linear transformation L from an interval to an interval is uniquely
determined by the values L(e) for both endpoints e, so this transformation � and
thus, the resuting membership functions � are uniquely de�ned.

A triangular domain has three vertices. We will denote them by A, B, and C.
It is therefore reasonable to come up with three membership functions ma(x, y),
mb(x, y), and mc(x, y), for which:

� the function ma(x, y) is equal to 1 at the point A and is equal to 0 at the
two other vertices B and C � and on the whole segment BC;

� the function mb(x, y) is equal to 1 at the point B and is equal to 0 at the
two other vertices A and C � and on the whole segment AC; and

� the function mc(x, y) is equal to 1 at the point C and is equal to 0 at the
two other vertices A and B � and on the whole segment AB.

To describe the values of these three membership functions at a point P inside
the triangular domain, we select three basic functions a(s), b(s), and c(s) from
[0, 1] to [0, 1], for which a(0) = b(0) = c(0) = 0 and a(1) = b(1) = c(1) = 1.

Then, to �nd the value ma(P ), we take a straight line segment AQ starting
with A and going through P until it reaches the segment BC at some point Q ∈
BC. We know thatma(Q) = 0 and thatma(A) = 1. So, to �nd the valuema(P ),
we use the value a(s), where s = L(P ) is obtained by a linear transformation L
from the interval QA to the interval [0, 1] � a linear transformation L for which:

� the point Q at which ma(Q) = 0 maps into the value s = 0 for which
a(s) = 0, and

� the point A at which ma(A) = 1 maps into the value s = 1 for which
a(s) = 1.
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Similarly, to �nd the value mb(P ), we take a straight line segment BQ start-
ing with B and going through P until it reaches the segment AC at some point
Q ∈ AC. We know that mb(Q) = 0 and that mb(B) = 1. So, to �nd the value
mb(P ), we use the value b(s), where s = L(P ) is obtained by a linear transfor-
mation L from the interval QB to the interval [0, 1] � a linear transformation L
for which:

� the pointQ at whichmb(Q) = 0maps into the value s = 0 for which b(s) = 0,
and

� the point B at which mb(B) = 1 maps into the value s = 1 for which
b(s) = 1.

Finally, to �nd the value mc(P ), we take a straight line segment CQ starting
with C and going through P until it reaches the segment AB at some point Q ∈
AB. We know that mc(Q) = 0 and that mc(C) = 1. So, to �nd the value mc(P ),
we use the value c(s), where s = L(P ) is obtained by a linear transformation L
from the interval QC to the interval [0, 1] � a linear transformation L for which:

� the point Q at which mc(Q) = 0 maps into the value s = 0 for which
c(s) = 0, and

� the point C at whichmc(C) = 1maps into the value s = 1 for which c(s) = 1.

These three functions should add up to 1.

This is how the extension was done. This is how an extension was done in
[5] � with a(s) = b(s) = c(s) = s.

Remaining challenge. Remaining challenge is to check if we can extend it
to more general membership functions � i.e., to more general basic functions.
As promised, in the following (last) section, we prove that this is not possible:
that only for triangular membership functions, we can have an extension to a
triangular domain.

4 Main Result: Extension to Triangular Domains Is Only

Possible for Triangular Membership Functions

Speci�c case. To prove our result, let us consider a speci�c example of a tri-
angular domain: a right equilateral triangle with sides of length 1:
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above procedure leads to

ma(x, y) = a(1− (x+ y)) :
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Finally, for mc(P ), we get mc(x, y) = c(y):
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The functional equation describing the requirement that the member-

ship functions should add to 1. Now that we have explicit expressions for
all three membership functions in terms of the basic functions, the requirement
ma(P ) +mb(P ) +mc(P ) = 1 (that the sum of the three membership functions
be equal to 1) takes the following form:

a(1− (x+ y)) + b(x) + c(y) = 1. (2)

Let us �nd all possible triples of functions that satisfy this functional equation.

Let us solve the resulting functional equation. For y = 0, we have c(y) =
c(0) = 0 and thus, the equation (2) takes the following simpli�ed form:

a(1− x) + b(x) = 1. (3)

Thus, for all x, we have
a(1− x) = 1− b(x). (4)

Similarly, for x = 0, we have b(x) = b(0) = 0 and thus, the equation (2) takes
the following simpli�ed form:

a(1− y) + c(y) = 1. (5)

Thus, for all y, we have
a(1− y) = 1− c(y). (6)

For x = y, from (4) and (6), we can conclude that 1− b(y) = 1− c(y), so

c(y) = b(y). (7)

Now, from (4), we can conclude that

a(1− (x+ y)) = 1− b(x+ y). (8)



8 Záme£niková et al.

Substituting the expressions (7) and (8) into the equality (2). we conclude that

1− b(x+ y) + b(x) + b(y) = 1. (9)

Subtracting 1 from both sides and adding b(x + y) to both sides, we conclude
that

b(x+ y) = b(x) + b(y). (10)

It is known (see, e.g., [1] that every continuous solution of the equation (10) has
the form b(x) = c ·x for some c. Since b(1) = 1, we get c = 1 and b(x) = x. From
the formulas (7) and (8), we can now conclude that c(x) = a(x) = x, i.e., that
indeed a(s) = b(s) = c(s) = s for all s.

In other words, the only case when the three above-de�ned membership func-
tions ma(P ), mb(P ), and mc(P ) add up to 1 is when all these functions are
triangular. The result is thus proven.
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