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Abstract. Everyone talks about the need for Explainable AI � when,
to supplement a long di�cult-to-understand sequence of computational
steps leading to AI's decision, we are looking for a shorter and under-
standable more-informal explanation for this decision. In this paper, we
argue that this need is a particular case of what we call Explainable
Mathematics � when we want to supplement a long sequence of argu-
ments and/or computations with a shorter and understandable more-
informal explanation. Important instances of Explainable Mathematics
are Yuri Gurevich's Quizani dialogs that help explain complex results
from theoretical computer science and physicists' more-informal expla-
nations of complex physical phenomena. We explain that in the physics'
case, since � according to most physicists � all physical theories are ap-
proximate, the use of approximate more-informal methods often makes
more sense that the use of rigorous methods that implicitly assume that
the current theories are absolute correct. We then apply this argument to
one of the common uses of physics in theory of computation � that limi-
tation by the speed of light limits the computation speed. Speci�cally, we
show that quantum space-time ideas potentially allow computations at
the micro-level speed of light which can be higher than its usual macro-
level value. This potential increase in possible communication speed can
speed up computations.

Keywords: Explainable AI· Explainable Mathematics · Yuri Gurevich·
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1 Need for Explainable Mathematics

Need for explainable AI: a brief reminder. Everyone knows about spectac-
ular successes of Large Language Models � starting with ChatGPT � and other
AI models based on deep learning. While these models are very good, they are
not perfect, sometimes they make mistakes. At �rst glance, this should not be
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a serious problem: human decision makers also make mistakes: human bankers
sometimes miscalculate a situation and deny a loan to a worthy potential cus-
tomer, human medical doctors sometimes misdiagnose diseases, etc. So why are
AI's mistakes not as tolerable?

The answer to this question is that there is a di�erence. If we are not 100%
sure about the doctor's diagnosis, we can ask the doctor for explanations � and
either become more convinced or, vice versa, become less convinced and look
for a second opinion. The possibility of such explanations decreases the negative
e�ect of mistakes by human experts. In contrast, modern AI systems provide
recommendations without providing any explanation whatsoever, we can either
take their advice or reject it.

In some cases, the systems are proprietary, we do not know what is happening
inside these systems. However, even open-code AI systems are not explanatory.
Yes, we can trace all millions and billions of neurons and follow each step of the
corresponding computations � but this does not make the recommendation any
more explainable.

This absence of explanations is one of the main reasons why many researchers
are trying to make AI systems explainable.

There are other areas where there is a similar need for explainability.

Modern AI systems are not the only case when we have the results, but we lack
a commonsense explanation of these results. This often happens when we use
mathematics � we may have a long and complex computations or a long and
complex proof. These computations and proofs can be about applications to
computing, about applications to physics, about abstract mathematics. In such
cases, we may be able to formally check every single step, but it is still desirable
to have a more commonsense understanding of the computations or proofs � we
need to understand the main ideas behind them.

Yes, in mathematics � and theoretical computer science � the ultimate goal
is to have a proof. This is what prizes are given for, this is the main source
of prestige � and if later someone �nds a clearer proof of the same result, it
will not be easy to publish this new proof in a prestigious journal � unless the
new proof method leads to new results as well. However, everyone appreciates
an explanation. This is one of the perks of personally attending a conference
on theoretical computer science � yes, you can always read the proceedings and
con�rm the proofs, but in the talks, you hear more motivations and explanations
� and moreover, you can usually clarify all this in a person-to-person dialog with
the author.

Ideally, we want to have � as Paul Erdos said � a proof from the Book, where
all steps are natural and all why-questions are already answered; see, e.g., [4].

Summarizing: everyone talks about explainable AI, but what we need is ex-

plainable mathematics as well. Here, by mathematics, we mean � as professional
mathematicians do � the application of absolutely rigorous methods.

How is this related to Yuri Gurevich? At this point, readers who are not
familiar with all the aspects of Yuri Gurevich's activities may wonder: this all
may be good, but what does it have to do with Yuri Girevich whose birthday we
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are celebrating? Those who are more familiar with Yuri's activities do not have
to ask this question: they know that, in addition to proving many interesting
(and often technically di�cult) results, Yuri has been spending a lot of time and
e�orts making these results � and results of others � more explainable. The best
evidence for this is his regular column in the Bulletin of European Association of
Theoretical Computer Science (EATCS), where � especially in his Quisani role �
he explains and clari�es complex issues. From this viewpoint, we can truly view
him as one of the (or even �the�) founding fathers of Explainable Mathematics.

2 Explainable Mathematics: Preliminary Ideas

Main idea. A mathematical proof is a sequence of absolutely rigorous steps.
Proofs can be long and thus, not easy to understand. In such cases, it is probably
not possible to have a shorter rigorous proof. The only way to have a shorter
explanation is not to require absolute rigor, but instead of have a sequence of
reasonably convincing steps.

This is, in principle, possible. Such convincing �proofs" are not just a pipe
dreams: they are normal in physics (see, e.g., [3, 9]). For example, physicists
often provide somewhat informal arguments of why some terms in an equation
can be ignored. Studying their �proofs� may help come up with understandable
mathematics in other situations as well.

How do physicists do it: a possible ideas. From the purely mathematical
viewpoint, what physicists do often sounds weird. They apply di�erentiation to
functions that are known to be not di�erentiable, they ignore small terms in a
sum � i.e., in e�ect, replace a number a with a+ ε with some small ε, etc. From
the mathematical viewpoint, this sounds as heresy: it is well known that if add
a single false statement, then we can derive any statement at all. Similarly, if we
assume that a ≈ a+ ε for all su�ciently small ε � e.g., for all ε whose absolute
value is smaller than some threshold value ε0, and still require transitivity of ≈
� as physicists do � then we can, by induction, conclude that a ≈ b is true for
all possible pairs of real numbers � which is not what physicists claim.

How do they avoid such paradoxical results? One reason is that when they
make conclusions, they do not just rely on mathematics � they use physical
meaning. In other words, they use explanations to �lter out physically meaning-
less results � which is similar to what we want from explainable AI.

Another reason is that the physicists limit the size of the �proof� chains. Yes,
if ε0 = 10−10, then we can conclude, by induction, that 0 ≈ 1, but this conclusion
would require more than 1010 steps � so, if we limit ourselves to chains with only
dozens of step, we will never get this counterintuitive result.

How can we describe this in precise terms? A natural idea is to assign a
degree of con�dence to each derived statement � similarly to how it is done in
fuzzy logic (see, e.g., [1, 5�8, 10]): we assign a certain degree of con�dence to
1-step derivations, smaller one to derivations that require 2 steps, etc. � and this
degree reaches 0 (or almost 0) after a reasonable number of steps. For example,
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if we view these degrees as probabilities and assume that all these probabilities
are independent, then if p is the degree of con�dence in a statement obtained by
a single step, then after 2 steps we get degree of con�dence p2, after 3 steps p3,
etc. � and the value pk tends to 0 very fast.

3 This May Be Also Helpful for Physics

From rigorous derivations to commonsense explanations: a brief re-

minder. In the previous section, we talked about a situation when we already
have a rigorous proof, and we want to make it explainable. As an example, we
have mentioned situations in which we have a longer rigorous proof, and we also
have a more intuitive and less rigorous explanation of this result that is provided
in physics textbooks. This physics example shows that such explanations are, in
principle, possible � and a study of such existing explanations can help us come
up to come up with similar explanations in situations when only have a rigorous
proof and no intuitive explanation.

Sometimes, there is no rigorous derivation. A study of existing explana-
tions may also help in situations when we do not have a rigorous proof, when
we only have an informal explanation � and such situations are ubiquitous in
physics. For example, there is still no acceptable consistent quantum �eld the-
ory. In many cases, straightforward computations lead to physically meaningless
in�nities � and then special tricks known as renormalization are used to get
meaningful �nite results.

Probably the simplest example is computing the overall energy of an electron
� including energy E = m0 · c2 coming from its rest mass and the energy of its
electric �eld; see, e.g., [3, 9]. In relativity theory, each elementary particle is a
point-wise particle � otherwise, since all communications are limited by the speed
of light, di�erent spatial parts of the particle would not be able to communicate
with each other right away and would, thus, act as interacting sub-particles. For
a pointwise particle with electric charge q, the amplitude of the electric �eld E is
proportional to q/r2. Its energy density ρ is proportional to (E)2, i.e., to q2/r4.
So, the overall energy E of the electric �eld can be computed as the integral of
this energy density over the whole 3-D space, i.e., as

E =

∫
x

q2

r4
dx =

∫ ∞

r=0

q2

r4
· 4 · π · r2 dr = const ·

∫ ∞

0

r−2 dr =

−const · r−1|∞0 =
1

0
− 1

∞
= ∞.

This example is about non-quantum physics, but in the quantum case, we get
the same in�nity.

To avoid this paradox, we can assume that the particle has �nite size ε � in
which case the overall energy E(ε) of the electric �eld is �nite � and that it has
rest mass m0(ε). Then we select m0(ε) in such way that in the limit ε → 0, the
overall energy m0(ε) · c2 + E(ε) tends to the actually measured value.
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Another example is the general case of quantum electrodynamics, where, in
principle, we can predict any observation results by summing an in�nite series
� similar to Taylor series � that correspond to so-called Feynman diagrams with
di�erent number N of virtual particles taken of account. This works for reason-
able number of virtual particles, but it is known that starting with N ≈ 137,
this series diverges; see, e.g., [2].

Comment. Since most readers of this volume are specialists in theoretical com-
puter science, it is worth mentioning that, in contrast to problems like �is P
equal to NP� � that have a precise mathematical formulation, a natural ques-
tion of whether feasible-time computations that use quantum e�ects allows up
go beyond P is not even properly formalized � because there is still no precise
formulation of quantum physics. So, while the fact that we cannot prove whether
P = NP is a challenge to interested mathematicians, the quantum question may
have to wait until physicists come up with a rigorous theory that would allow
this question to be formulated in mathematical terms.

In such �reverse explainable mathematics� cases, explainable mathe-

matics may help. In such situations when we only have an explanation but no
rigorous proof is known, analysis of the relation between existing rigorous proofs
and their explanations may be able to help in �nding the desired rigorous proof.

4 This May Be Also Help to Speed Up Computations

There is a good reason for physicists to use approximate, non-rigorous

methods. As we have mentioned, at �rst glance, from the mathematical view-
point, what physicists sometimes do with non-rigorous proofs sounds like a sign
of weakness: since they cannot prove their results rigorously, they come up with
informal explanations.

However, this paternalistic approach to physics implicitly assumes that we
know the �nal equations of physics. History of physics teaches us otherwise. For
example, Newton's physics � which seemed to be perfectly correct for several
centuries � turned out to be only a good approximation to reality. To get a more
accurate description of real-life phenomena, we need to take into account e�ects
of special and general relativity theory and of quantum physics. Based on this
history, most physicists believe that the current state-of-the-art in physics is not
�nal: that eventually, a more accurate theory will emerge.

From this viewpoint, since the current physical theory is � most probably
� only approximately true, it does not make much sense to make rigorous con-
clusions based on the assumption that the current theory is absolutely true. In
particular, when the current theory predict some value a of a physical quantity,
its actual value may well be a + ε for some small ε. Because of this, both the
predicted value a and a nearby value a+ ε provided by an approximate method
are both physically possible � so there is a reason to use the value produced by
the approximate method.
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From this viewpoint, let us look at how we use physics in theoretical

computer science: this can help us perform computations faster. One
of the physical facts used in the analysis of what can be, in principle, computed
in reasonable time, is the fact that, according to relativity theory, all communi-
cations are limited by the speed light.

This limitation is absolutely true in special relativity theory � which is a
good approximation to reality. To get a better approximation, we need to use
General Relativity, where the correct limitation is formulated in terms of the
space-time metric gij � that generalized the metric ηij = diag(c2,−1,−1,−1) of
Special Relativity; see, e.g., [3, 9]. In these terms, the restriction on the velocity
vi = dxi/dt takes the form

g00 · dt2 + 2
∑
i

g0i · dxi · dt+
∑
i,j

gij · dxi · dxj ≥ 0.

If we divide both sides by dt2, we get an equivalent formulation in terms of the
velocity components vi:∑

i,j

|gij | · vi · vj − 2
∑
i

g0i · vi ≤ g00.

In particular, if we only consider motion in the i-th direction, then this constraint
takes the form

|gii| · v2i − 2g0i · vi ≤ g00.

This quadratic inequality is easy to solve: it is equivalent to:

g0i −
√
(g0i)2 + 4 · |gii| · g00

2 · gii
≤ vi ≤

g0i +
√
(g0i)2 + 4 · |gii| · g00

2 · gii
.

In particular, in the case of Special Relativity, when g00 = c2, gii = −1, and
g0i = 0, we get the usual constraints −c ≤ vi ≤ c. In general, photons � and
other particles of 0 rest mass � have the velocities corresponding to the endpoints
of the above interval.

Of course, General Relativity is also an approximate theory. To get a more
accurate description of reality, we need to take into account quantum e�ects. Ac-
cording to quantum physics, there are always random �uctuations in the values
of the physical �eld � and the smaller spatial size area we consider, the larger
these �uctuations. Thus, even when on the macro-level we have the space-time
metric corresponding to Special Relativity, on the micro-level, we have random
deviations from this metric. Due to uncertainty principle, a photon with energy
E occupies spatial region of size (h/E)·c, where h is Planck's constant. A photon
with a su�ciently large energy will feel the metric corresponding to its size, i.e.,
the micro-level metric a�ected by quantum �uctuations.

Because of the �uctuations, in some locations, the local speed of light is
smaller than its macro-value c, while in some other locations it is larger than
the macro-level speed of light. Quantum �uctuations at di�erent spatial points
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are not correlated � because, due to relativity, they cannot a�ect each other. So
in a small vicinity of each spatial point, we can �nd a nearby point in which the
speed of light is larger than the macro-level speed of light c. Thus, by a minor
modi�cation of the original straight-line trajectory, we can �nd a photon that
travels with a velocity larger that c.

So, in principle, we can reach communication speeds faster than the macro-
level speed of light � and the higher-energy photons we use for communication,
the larger will be the �uctuations and thus, the larger the actual communication
speed. And since we will be able to communicate faster, we will thus be able to
perform computations faster as well!
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