
Why um and u · log(u) Are the Most Effective
Nonlinear Functions in Fuzzy Clustering:

Theoretical Explanation of the Empirical Fact

Olga Kosheleva1, Vladik Kreinovich2, and Yuchi Kanzawa3

1 Department of Teacher Education, University of Texas at El Paso,
500 W. University, El Paso, Texas 79968, USA, olgak@utep.edu,

https://www.cs.utep.edu/vladik/olgavita.html
2 Department of Computer Science, University of Texas at El Paso,
500 W. University, El Paso, Texas 79968, USA, vladik@utep.edu,

https://www.cs.utep.edu/vladik/
3 School of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu,

Koto, Tokyo 1358548, Japan, kanzawa@shibaura-it.ac.jp

Abstract. In fuzzy clustering, we need to have non-linear functions of
the membership degrees. Different nonlinear functions have been tried.
Empirical evidence shows that for fuzzy clustering, the most effective
nonlinear functions are um and u · log(u). In this paper, we provide a
theoretical explanation for this empirical fact.

Keywords: fuzzy clustering, normalization invariance, theoretical ex-
planation

1 Formulation of the Problem

Why clustering: a brief reminder. Often, we feel that the objects form
several clusters: e.g., pets can be divided into dogs and cats, people are divided
by race, by ethnicity, etc. – so that with respect to some characteristics, objects
from the same cluster are closer to each other than objects from different clusters;
see, e.g., [2].

Division into clusters often helps. For example, in medicine, since objects
from the same cluster are similar to each other, it is natural to expect that the
same medicine and/or the same medical procedure can help all the people from
this cluster. Thus, instead of looking for individual cure for each patient, it is
sufficient to find cure for each cluster. From this viewpoint, it is desirable to
have an automatic procedure for dividing objects into clusters.

k-means clustering: a brief reminder. Once we have found typical elements
t1, . . . , tc in each cluster, a natural way to assign objects to clusters is to assign,
to each object x, the cluster i for which x is the closest to the corresponding
typical element, i.e., for which the distance d(x, ti) is the smallest possible. This

way, the distance d(x)
def
= d(x, ti) from the object x to the typical object ti from



2 Olga Kosheleva, Vladik Kreinovich, and Yuchi Kanzawa

the resulting cluster is equal to

d(x) = min
i

d(x, ti).

By definition of a cluster, all objects within the same cluster should be close
to each other. Thus, all the value d(x) should be small – and the smaller all these
values, the more we believe that our division into clusters is correct. In other
words, we want to have d(x) ≈ 0 for all objects x. This means that we want the
tuple (d(x), . . .) formed by the values d(x) to be as close to the tuple (0, . . . , 0)
as possible.

A natural way to measure the distance d between the two tuples is to interpret
each tuple as a point in the corresponding multi-D space, and to use the usual
Euclidean formula for the distance between the two points in this space. For our
tuples, this means

d =

√∑
x

d2(x).

The usual way to minimize an expression is to differentiate it and equate the
derivative to 0. This is difficult to do for the above expression, since the square
root function

√
v is not differentiable for v = 0. To avoid this problem, we can

use the fact that minimizing the distance d is equivalent to minimizing its square,
so we minimize the sum

d2 =
∑
x

d2(x).

Each d(x) is the smallest of the values d(x, ti), so we can conclude that

d2 =
∑
x

min
i

d2(x, ti).

Our goal is then to find the tuples t1, . . . , tc for which the expression d2 is the
smallest possible. The resulting clustering method is known as k-means.

To optimize d2, we can use the following iterative procedure. First, we ran-
domly select the typical elements t1, . . . , tn. On each iteration, we start with
some tuple of typical elements ti. Then:

– First, we assign, to each object x, a cluster i for which the distance d(x, ti)
is the smallest.

– Then, for each i, we re-calculate the typical element ti by minimizing the
sum

∑
d2(x, ti), where the sum is taken overall all the objects x that are,

at this moment, assigned to cluster i. In particular, if d(x, ti) is the usual
Euclidean distance, then the minimizing elements ti are simply the mean
values of all the objects x from the cluster.

On each iteration, the sum d2 decreases or stays the same, so hopefully, the
process will converge, We stop when on some iteration, typical elements do not
change, i.e., in precise terms, when the distance d(ti, t

′
i) between the values ti

before and this iteration is smaller than some fixed small threshold ε > 0.



Nonlinear Functions in Fuzzy Clustering 3

Need for fuzzy clustering. K-means assigns each object to a cluster. In prac-
tice, however, we can have objects that belongs – to some extent – to several
clusters. For example, we can have people of mixed racial and/or ethnic origin.
It is therefore desirable, instead of assigning an object x to a single cluster, to
assign, for each object x and for each cluster i, a degree uxi to which the object x
belongs to the cluster i. These degrees split the object between several clusters,
so it is reasonable to require that for each object x, the corresponding degrees
add up to 1: ∑

i

uxi = 1.

Resulting fuzzy clustering method: need for a nonlinear function. In
this scheme, we need, given the objects, to define the corresponding values uxi.
We thus need to generalize the above objective function d2 to the case when we
have degrees dxi. At first glance, this looks easy to do: the classical situation
corresponds to the case when uxi = 1 for the cluster i containing the object x,
and uxj = 0 for all other clusters j. In these terms, the expression

min
i

d2(x, ti)

takes the form ∑
i

uxi · d2(x, ti),

and the objective function takes the following form:∑
x

∑
i

uxi · d2(x, ti).

We need to minimizing this expression under the condition that uxi ≥ 0 and∑
i

uxi = 1.

The problem with this approach is that in this problem we optimize a linear
combination of the unknowns uxi under a linear constraint. Such problems are
known as linear programming problems, and it is known that for each such
problem, one of the optimal solutions is located at one of the vertices of the
domain over which we optimize; see, e.g., [3]. The vertices correspond to the
case when as many inequalities as possible become equalities. In this case, we
have n − 1 inequalities uxi ≥ 0 become equalities, i.e., we have a tuple uxi in
which n− 1 degrees are 0s and the remaining degree is equal to 1. Thus, we will
always get a crisp solution.

So, to get truly fuzzy solutions, we cannot use the objective function whose
dependence on uxi is linear, we must have a nonlinear dependence.

Fuzzy clustering: resulting general formulas. We can get a desired non-
linear expression if we replace uxi in our objective function with a nonlinear
functions of uxi. In general, replacing uxi with a nonlinear function A(uxi) of



4 Olga Kosheleva, Vladik Kreinovich, and Yuchi Kanzawa

uxi and/or add a term B(uxi) non-linear in uxi to the objective function, we get
the following objective function:∑

x,i

(A(uxi) · Jxi +B(uxi)),

where we denoted Jxi
def
= d2(x, ti).

Empirical fact. Different nonlinear functions A(u) and B(u) have been tried.
It turns out that in the most effective pairs, we have A(u) = um for some m and
B(u) has either the same form or the form u · log(u). In this paper, we provide
a theoretical explanation for this empirical fact.

2 Our Explanation

Main idea: normalization-invariance. Usually, we consider normalized fuzzy
sets, i.e., fuzzy sets for which at some point, membership is equal to 1. Usually,
the membership degree m(x) increases up to a certain value x0 at which it is
equal to 1, and then it start decreasing again.

What if our prior knowledge is that the value x has a property described
by the corresponding membership function – e.g., that x is small, in which case
x0 = 0. Suppose now that we have received an additional information that x is
larger than or equal to some threshold t > x0. What will then be the resulting
knowledge about x? We know that x is small and that x ≥ t, so the resulting
fuzzy set is an intersection of fuzzy sets corresponding to small and to x ≥ t.
For values x < t, the membership function m∩(x) of this intersection is 0, and
for value x ≥ t, it is smaller than or equal to m(t) < 1. This membership
function never reaches the value 1 and is, thus, not normalized – which is a
typical situation for intersections.

Many algorithm for processing fuzzy information assume that the member-
ship functions are normalized. So, to be able to apply these algorithms to the
intersection membership function m∩(x), we need to first transform it into a
normalized one mnorm(x). This transformation is known as normalization. The
usual normalization means multiplying all the values of this membership by an
appropriate constant, namely

mnorm(x) = λ ·m∩(x), where λ =
1

max
y

m∩(y)
.

From this viewpoint, a membership function is defined modulo multiplication
by a constant m(x) → λ ·m(x).

Since this normalization does not change the meaning of the membership
function, it is reasonable to require that whatever conclusions we can make
should not change if we simply multiply all membership degrees by a constant
λ. We will call this property – a detailed description will be given later in this
paper – normalization-invariance.



Nonlinear Functions in Fuzzy Clustering 5

For this particular example, the constraint – that the sum of all degrees uxi

corresponding to each object x is equal to 1 – has to change, since after we
multiply all the values ux,t by the same normalizing constant λ, the sum is also
multiplied by λ. Thus, the constraint should be that all these sums are equal to
some constant λ. So, we arrive at the following definitions.

Definition 1.

– By a fuzzy clustering method, we mean a pair of measurable functions
(A(u), B(u)).

– We say that a clustering method (A(u), B(u)) is non-trivial if A(u) is not a
constant function.

– We say that two clustering methods (A(u), B(u)) and (A′(u), B′(u)) are
equivalent if A′(u) = c · A(u) and B′(u) = c · B(u) + c0 + c1 · u for some
coefficients c > 0, c0 and c1.

– We say that a fuzzy clustering method is normalization-invariant if for each
λ > 0 and for every four sequences of values uxi, Jxi, u

′
xi, J

′
xi for which∑

i

uxi =
∑
i

u′
xi for all x,

if
∑
x,i

(A(uxi) · Jxi +B(uxi)) ≥
∑
x,i

(A(u′
xi) · J ′

xi +B(uxi)),

then
∑
x,i

(A(λ · uxi) · Jxi +B(λ · uxi)) ≥
∑
x,i

(A(λ · u′
xi) · J ′

xi +B(λ · uxi)).

Comment. The term “non-trivial” comes from the fact that if A(u) is a constant
function, then, since the term depending on the degrees uxi does not depend on
the distances Jxi – and thus, on the input data, the resulting “optimal” degrees
uxi do not depend on the data at all – while we want clustering determined by
the data.

The term “equivalent” is explained by the following simple result:

Proposition 1.When two fuzzy clustering methods (A(u), B(u)) and (A′(u), B′(u))
are equivalent, then for every four sequences of values uxi, Jxi, u

′
xi, J

′
xi for which∑

i

uxi =
∑
i

u′
xi for all x,

if
∑
x,i

(A(uxi) · Jxi +B(uxi)) ≥
∑
x,i

(A(u′
xi) · J ′

xi +B(uxi)),

then
∑
x,i

(A′(uxi) · Jxi +B′(uxi)) ≥
∑
x,i

(A′(u′
xi) · J ′

xi +B′(uxi)).

Proof of Proposition 1.We can get an inequality corresponding to the c-based
change in the function A(u) if we multiply both sides of the original inequality by
c. Terms proportional to c0 simply lead to the same constant on both sides – so



6 Olga Kosheleva, Vladik Kreinovich, and Yuchi Kanzawa

by subtracting this constant, we get an equivalent inequality. Terms proportional
to c1 cancel each other, since they are proportional to the sum of all the degrees
uxi, and the condition is that the sum of the values uxi is the same as the sum
of all the values u′

xi. The proposition is proven.

Proposition 2. A non-trivial fuzzy clustering method is normalization-invariant
if and only it is equivalent to the following method: A(u) = um for some m, and
the function B(u) has the following form:

– when m ̸= 1, we have B(u) = cm · um for some cm;
– when m = 1, we have B(u) = c · u · log(u) for some c.

Proof of Proposition 2. It is easy to show that both above examples are
normalization-invariant. So, to prove the proposition, it is sufficient to prove that
every normalization-invariant fuzzy clustering has the desired form. To prove
this, let us consider the case when we have only one object x and two clusters
i = 1 and i = 2. In this case, we will skip the subscript x and write ui, Ji
and u′

i instead of uxi, Jxi, and u′
xi. Then, the above constraint takes the form

u1 + u2 = u′
1 + u′

2. Let us denote the sum u1 + u2 = u′
1 + u′

2 by u. Then,
u2 = u− u1 and u′

2 = u− u′
1. In this case and in these notations, normalization

invariance takes the following form: if

A(u1) · J1 +A(u− u1) · J2 +B(u1) +B(u− u1) ≥

A(u′
1) · J ′

1 +A(u− u′
1) · J ′

2 +B(u′
1) +B(u− u′

1), (1)

then

A(λ · u1) · J1 +A(λ · (u− u1)) · J2 +B(λ · u1) +B(λ · (u− u1)) ≥

A(λ · u′
1) · J ′

1 +A(λ · (u− u′
1)) · J ′

2 +B(λ · u′
1) +B(λ · (u− u′

1)). (2)

Since a = b means a ≥ b and b ≥ a, if we have equality in equation (1), then
we have both inequality (1) and the opposite inequality. From normalization in-
variance, we can now conclude that we have both inequality (2) and the opposite
inequality. Thus, we have equality in (2). In other words, if:

A(u1) · J1 +A(u− u1) · J2 +B(u1) +B(u− u1) =

A(u′
1) · J ′

1 +A(u− u′
1) · J ′

2 +B(u′
1) +B(u− u′

1), (3)

then

A(λ · u1) · J1 +A(λ · (u− u1)) · J2 +B(λ · u1) +B(λ · (u− u1)) =

A(λ · u′
1) · J ′

1 +A(λ · (u− u′
1)) · J ′

2 +B(λ · u′
1) +B(λ · (u− u′

1)). (4)

By moving all the terms containing Ji and J ′
i into the left-hand side and other

terms into the right-hand side, we conclude that if

A(u1) · J1 +A(u− u1) · J2 −A(u′
1) · J ′

1 −A(u− u′
1) · J ′

2 =



Nonlinear Functions in Fuzzy Clustering 7

B(u′
1) +B(u− u′

1)−B(u1)−B(u− u1), (5)

then

A(λ · u1) · J1 +A(λ · (u− u1)) · J2 −A(λ · u′
1) · J ′

1 −A(λ · (u− u′
1)) · J ′

2 =

B(λ · u′
1) +B(λ · (u− u′

1))−B(λ · u1)−B(λ · (u− u1)). (6)

Let Ji and J ′
i satisfy the equation (5). Then, if we have a set of values ∆Ji

and ∆J ′
i for which

A(u1) ·∆J1 +A(u− u1) ·∆J2 −A(u′
1) ·∆J ′

1 −A(u− u′
1) ·∆J ′

2 = 0, (7)

then for J̃i
def
= Ji +∆Ji and J̃ ′

i
def
= J ′

i +∆J ′
i , by adding (5) and (7), we get

A(u1) · J̃1 +A(u− u1) · J̃2 −A(u′
1) · J̃ ′

1 −A(u− u′
1) · J̃ ′

2 =

B(u′
1) +B(u− u′

1)−B(u1)−B(u− u1). (8)

By normalization invariance to (8), we have

A(λ · u1) · J̃1 +A(λ · (u− u1)) · J̃2 −A(λ · u′
1) · J̃ ′

1 −A(λ · (u− u′
1)) · J̃ ′

2 =

B(λ · u′
1) +B(λ · (u− u′

1))−B(λ · u1)−B(λ · (u− u1)). (9)

Subtracting (6) from (9), we conclude that

A(λ·u1)·∆J1+A(λ·(u−u1))·∆J2−A(λ·u′
1)·∆J ′

1−A(λ·(u−u′
1))·∆J ′

2 = 0. (10)

So, for every set of values ∆Ji and ∆J ′
i , equality (7) implies equality (10). The

left-hand side of each of these two equalities can be described as a dot (scalar)
products of two vectors, namely as ∆ ·V = 0 and, correspondingly, as ∆ ·V ′ = 0,
where

∆
def
= (∆J1, ∆J2, ∆J ′

1, ∆J ′
2),

V
def
= (A(u1), A(u− u1),−A(u′

1),−A(u− u′
1)), and

V ′ def
= (A(λ · u1), A(λ · (u− u1)),−A(λ · u′

1),−A(λ · (u− u′
1))).

Thus, every vector orthogonal to V is also orthogonal to V ′.
Let us prove that this implies that the vector V ′ is parallel to V . Indeed, V ′

can be represented as the sum of two components V ′ = V ′
∥ + V⊥, where

V ′
∥

def
=

V ′ · V
|V |

· V

(where |V | =
√
V · V is the length of the vector V ) is the component parallel to

V , and V ′
⊥ is the component which is orthogonal to V . Since V ′

⊥ is orthogonal
to V , it should also be orthogonal to V ′, i.e., we should have 0 = V ′ · V ′

⊥ =
V∥·V ′

⊥+V ′
⊥·V ′

⊥. Since V
′
∥ and V⊥ are orthogonal to each other, we have V∥·V ′

⊥ = 0,

thus V ′
⊥ · V ′

⊥ = 0, hence V ′
⊥ = 0, i.e., V ′ is indeed parallel to V .



8 Olga Kosheleva, Vladik Kreinovich, and Yuchi Kanzawa

Since V ′ is parallel to V , the vector V ′ can be obtained from V by multiplying
it by a constant c that, in general, may depends on λ, u1, u, and u′

1:

V ′ = c(λ, u1, u, u
′
1) · V. (11)

For the first components of the vectors, this means that

A(λ · u1) = c(λ, u1, u, u
′
1) ·A(u1). (12)

The value c is equal to the ratio A(λ · u1)/A(u1). This ratio does not depend on
u or on u′

1, so c does not depend on them either: c = c(λ, u1). Similarly, for the
third components of the vectors, the equality (11) takes the form

−A(λ · u′
1) = −c(λ, u1) ·A(u′

1).

We can conclude that c(λ, u1) is equal to the ratio A(λ · u′
1)/A(u′

1). This ratio
does not depend on u1, so c does not depend on u1 either: c = c(λ). So, the
equation (12) takes the following simplified form:

A(λ · u1) = c(λ) ·A(u1). (13)

It is known (see, e.g., [1]) that every measurable solution of this functional equa-
tion has the form A(u) = cA · um for constants cA and m. This is equivalent to
A(u) = um. So, we proved that the function A(u) has the desired form.

Let us now prove that the function B(u) also has the desired form. Indeed,
substituting the above expression for A(u) into the formulas (5) and (6), we
conclude that if

cA · um
1 · J1 + cA · (u− u1)

m · J2 − cA · (u′
1)

m · J ′
1 − cA · (u− u′

1)
m · J ′

2 =

B(u′
1) +B(u− u′

1)−B(u1)−B(u− u1), (14)

then

cA ·(λ·u1)
m ·J1+cA ·(λ·(u−u1))

m ·J2−cA ·(λ·u′
1)

m ·J ′
1−cA ·(λ·(u−u′

1))
m ·J ′

2 =

B(λ · u′
1) +B(λ · (u− u′

1))−B(λ · u1)−B(λ · (u− u1)). (15)

Multiplying both sides of the equality (14) by λm, we get an equivalent equality

cA ·(λ·u1)
m ·J1+cA ·(λ·(u−u1))

m ·J2−cA ·(λ·u′
1)

m ·J ′
1−cA ·(λ·(u−u′

1))
m ·J ′

2 =

λm ·B(u′
1) + λm ·B(u− u′

1)− λm ·B(u1)− λm ·B(u− u1). (16)

Since (16) is equivalent to (14), we can conclude that if we have (16), then we
have (15) as well. The left-hand sides of (15) and (16) are the same. For each
right-hand side of (16), we can always find J1 and J2 for which (16) is true –
and thus, (15) is true as well. Since the left-hand sides of (15) and (16) are equal
to each other, this means that the right-hand sides of these equalities are equal
to each other too. Thus, we have the following equality.

B(λ · u′
1) +B(λ · (u− u′

1))−B(λ · u1)−B(λ · (u− u1)) =



Nonlinear Functions in Fuzzy Clustering 9

λm ·B(u′
1) + λm ·B(u− u′

1)− λm ·B(u1)− λm ·B(u− u1). (17)

Moving all terms to the left-hand sides and grouping similar terms together, we
conclude that for

b(u)
def
= B(λ · u)− λm ·B(u), (18)

we get
b(u1) + b(u− u1)− b(u′

1)− b(u− u′
1) = 0. (19)

i.e., equivalently, that

b(u1) + b(u− u1) = b(u′
1) + b(u− u′

1) (20)

for all u1, u, and u′
1. In particular, for u′

1 = 0, we get

b(u1) + b(u− u1) = b(0) + b(u). (21)

If we subtract 2b(0) from both sides of this equality, we conclude that

(b(u1)− b(0)) + (b(u− u1)− b(0)) = b(u)− b(0). (22)

Thus, for t(u)
def
= b(u)− b(0), we have

t(u1) + t(u− u1) = t(u) (23)

for all u1 and u. It is known (see, e.g., [1]) that every measurable solution to this
functional equation is t(u) = ct·u for some ct. Thus, b(u) = t(u)+b(0) = ct·u+cb,
where we denoted b(0) by cb. Here, the coefficients ct and cb, in general, depend
on λ. So, by definition of b(u), we get the following equality:

B(λ · u)− λm ·B(u) = ct(λ) · u+ cb(λ). (24)

If we multiply both sides of the equality (24) by µm, we get

µm ·B(λ · u)− µm · λm ·B(u) = µm · ct(λ) · u+ µm · cb(λ). (25)

On the other hand, if, in the formula (24), we replace λ with µ, and replace u
with λ · u, we get the following:

B(λ · µ · u)− µm ·B(λ · u) = ct(µ) · λ · u+ cb(µ). (26)

If we add the equalities (25) and (26), we get the following equality:

B(λ ·µ ·u)−λm ·µm ·B(u) = ct(µ) ·λ ·u+cb(µ)+µm ·ct(λ) ·u+µm ·cb(λ). (27)

The left-hand side of this equality does not change if we swap λ and µ, so the
value of the right-hand side should also not change under this swap. In other
words, the following equality must hold:

ct(µ) · λ · u+ cb(µ) + µm · ct(λ) · u+ µm · cb(λ) =



10 Olga Kosheleva, Vladik Kreinovich, and Yuchi Kanzawa

ct(λ) · µ · u+ cb(λ) + λm · ct(µ) · u+ λm · cb(µ). (28)

This equality of two linear functions of u must be true for all u, so for the two
expressions both the free terms and the coefficients at u must be equal.

Equating the free terms, we get the following equality:

cb(µ) + µm · cb(λ) = cb(λ) + λm · cb(µ). (29)

By moving all the terms proportional to cb(µ) to the left-hand side and all other
terms to the right-hand side, we conclude that

cb(µ) · (1− λm) = cb(λ) · (1− µm). (30)

For non-trivial fuzzy clustering methods, m ̸= 0. So, we can divide both sides of
the equality (30) by the product (1− λm) · (1− µm) and get

cb(λ)

1− λm
=

cb(µ)

1− µm
. (31)

This equality holds for all possible λ and µ. This means that this expression is
a constant, not depending on λ at all. Let us denote this constant by cb. Then,
we have

cb(λ)

1− λm
= cb,

and thus,
cb(λ) = cb · (1− λm). (32)

By equating coefficients at u at both sides of the equality (28), we conclude
that

ct(µ) · λ+ µm · ct(λ) = ct(λ) · µ+ λm · ct(µ). (33)

By moving all the terms proportional to ct(µ) to the left-hand side and all other
terms to the right-hand side, we conclude that

ct(µ) · (λ− λm) = ct(µ) · (µ− µm). (34)

Let us first consider the general case when m ̸= 1; the case when m = 1 will be
considered separately later. In this case, we can divide both sides of the equality
(34) by the product (λ− λm) · (µ− µm) and get

ct(λ)

λ− λm
=

ct(µ)

µ− µm
. (35)

This equality holds for all possible λ and µ. This means that this expression is
a constant, not depending on λ at all. Let us denote this constant by ct. Then,
we have

ct(λ)

λ− λm
= ct,

and thus,
ct(λ) = ct · (λ− λm). (36)



Nonlinear Functions in Fuzzy Clustering 11

Substituting the expressions (32) and (36) into the formula (24), we conclude
that

B(λ · u)− λm ·B(u) = ct · (λ− λm) · u+ cb · (1− λm). (37)

For u = 1 and λ = x, we conclude that

B(x) = xm · b+ ct · (x− xm) + cb · (1− xm), (38)

where b
def
= B(1). Grouping together terms proportional to 1, x, and xm, we

conclude that
B(x) = c0 + c1 · x+ cm · xm, (39)

for c0 = cb, c1 = ct, and cm = b− cb. This is exactly the form that we wanted to
derive.

To complete the prove, we need to consider the special cases m = 1. In this
case, if we plug in the formula (32) for cb(λ) into the equality (24) and move the
term λm ·B(u) = λ ·B(u) to the right-hand side, we get the following equality:

B(λ · u) = λ ·B(u) + ct(λ) · u+ cb · (1− λ). (40)

If we swap λ and u, then we get the following equality in which only the right-
hand side changes:

B(λ · u) = u ·B(λ) + ct(u) · λ+ cb · (1− u). (41)

Since both equalities have the same left-hand side, their right-hand sides should
also be equal:

λ ·B(u) + ct(λ) · u+ cb − cb · λ = u ·B(λ) + ct(u) · λ+ cb − cb · u. (42)

The terms cb in both sides of (42) cancel each other. If move all the terms
proportional to λ to the left-hand side and all other terms to the right-hand
side, we get the following equality:

λ · (B(u)− ct(u)− cb) = u · (B(λ)− ct(λ)− cb). (43)

If we divide both sides by λ · u, we get the following:

B(u)− ct(u)− cb
u

=
B(λ)− ct(λ)− cb

λ
. (44)

This equality holds for all possible values λ and u. Thus, the corresponding ratio
does not depend on u, this ratio is a constant. Let us denote this constant by c,
then we have

B(u)− ct(u)− cb
u

= c and B(u)− ct(u)− cb = c · u. (45)

Thus, we have
ct(u) = B(u)− cb − c · u. (46)



12 Olga Kosheleva, Vladik Kreinovich, and Yuchi Kanzawa

Substituting this expression or ct(u) into the formula (40), we conclude that

B(λ · u) = λ ·B(u) +B(λ) · u− cb · u− c · λ · u+ cb − cb · λ. (47)

Let us show that this equality can be simplified if instead of the function B(u,
we use, for some c0 and c1, an equivalent function

B̃(u) = B(u) + c0 + c1 · u, (48)

for which
B(u) = B̃(u)− c0 − c1 · u. (49)

Indeed, from (47) and (48), we conclude that

B̃(λ · u) = λ ·B(u) +B(λ) · u− cb · u− c · λ · u+ cb − cb · λ+ c0 + c1 · λ · u, (50)

i.e., that

B̃(λ · u) = λ ·B(u) +B(λ) · u− cb · (u+ λ) + (c1 − c) · λ · u+ (c0 + cb). (51)

Substituting the expression (49) for B(u) into this equality, we conclude that

B̃(λ ·u) = λ · B̃(u)+ B̃(λ) ·u− (cb+ c0) · (u+λ)− (c1+ c) ·λ ·u+(c0+ cb). (21)

So, for c0 = −cb and c1 = −c, we get the simplified equality

B̃(λ · u) = λ · B̃(u) + B̃(λ) · u. (53)

If we divide both sides of this equality by λ · u, we conclude that

B̃(λ · u)
λ · u

=
B̃(u)

u
+

B̃(λ)

λ
. (54)

So, for b(u)
def
= B(u)/u, we have b(λ · u) = b(λ) + b(u). According to [1], any

measurable solution to this functional equation has the form b(u) = c · log(u) for
some constant c. Thus, we have B̃(u) = u · b(u) = c · u · log(u). This is exactly
what we wanted to prove for m = 1. The proposition is proven.

Acknowledgments

This work was supported in part by the AT&T Fellowship in Information Tech-
nology, by a grant from the Hungarian National Research, Development and
Innovation Office (NRDI), and by the Institute for Risk and Reliability, Leibniz
Universitaet Hannover, Germany.

References

1. J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge
University Press, 2008.

2. J. C. Bezdek, Elementary Cluster Analysis: Four Basic Methods that (Usually)
Work, River Publishers, Aarhus, Denmark, 2024.

3. R. J. Vanderbei, Linear Programming: Foundations and Extensions, Springer, New
York, 2014.


