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Abstract. In medicine, many diagnoses are made when, for some value
k, at least k of n possible symptoms are present. Many of such symptoms
– such as fever – are, in reality, fuzzy. For example, it makes no sense
that say that 38.0 is fever while 37.9 is not a fever, both are fever to some
degree. Once such degrees are given, we need to use them to estimate the
degree to which the patient has the corresponding disease. For this prob-
lem, the usual fuzzy techniques require exponentially many computa-
tional steps – so it is desirable to have a more efficient algorithm. Such an
algorithm was previously proposed for some specific “and”-operation (t-
norm). However, in different application areas, different “and”-operation
describe the reasoning within this domain. So, it is desirable to extend
the existing feasible algorithm to the case of general “and”-operations.
In this paper, we describe such an extension.
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1 Formulation of the problem

“At least k out of n” is practically useful. In medicine, often a diagnosis is
based on the condition that a certain number of symptoms are present – at least
k symptoms out of n possible symptoms, for some k. Let us give two examples
from [2]:

– “A patient is classified as high risk for septic shock if they show at least
four out of the following signs: hypotension, tachycardia, fever, leukocytosis,
altered mental status, elevated serum lactate levels.”



2 Olga Kosheleva, Vladik Kreinovich, and Klaus-Peter Adlassnig

– “A patient is classified as low risk for septic shock if they show at most
two out of the following signs: hypotension, tachycardia, fever, leukocytosis,
altered mental status, elevated serum lactate levels.” – which means that
when there are at least three signs, the risk is medium or high.

Need to take fuzzy-type uncertainty into account. In principle, one can
use “yes”-“no” (crisp) definitions of the symptoms. For example, we can say that
a body temperature of 38 C or higher is fever, while anything smaller than 38
is not a fever.

However, from the commonsense viewpoint, it does not make sense to call
38.0 a fever and 37.9 not a fever: the difference between the two values is close
to the accuracy of the thermometer. From this viewpoint, it makes more sense
to talk about to what degree the patient has a fever:

– temperature much smaller than 38 means that this is definitely not a fever,
– temperature much larger than 38 means that this is definitely a fever, but
– temperature close to 38 mean that we have a fever to some degree.

The technique to deal with such degrees is what is usually called fuzzy logic;
see, e.g., [1, 4, 6, 8–10]. In these terms, what we need is to take into account fuzzy
uncertainty.

How to estimate to what extent is the at-least-k-out-of-n condition
satisfied: a natural idea. When each statement is either true or false, it is
straightforward to decide when we have at least k out of n symptoms. However,
when we have symptoms satisfied to certain degrees m1, . . . ,mn, the at-least-
k-out-of-n condition is only satisfied to some degree. How can we compute this
degree?

In fuzzy techniques, a usual way to assign a degree to a complex statement
is:

– to represent this statement in terms of the basic logical connectives – “and”,
“or”, and “not” – and then

– to use fuzzy analogs of these connectives – i.e., “and”-operations f&(a, b)
(also known as t-norms), “or”-operations fvee(a, b) (also known as t-conorms),
and negation operations f¬(a).

For example, “at least k out of n” means that the set of symptoms can be any
set S with at least k elements.

– For each of these sets, the above approach leads to the formula

m(S) = f&(mi1 , . . . , niℓ , f¬(mj1), . . . , f¬(mjp)),

where i1, . . . , iℓ are all elements of the set S, while j1, . . . , jp are all symptoms
that do not belong to the set S.

– Then, the degree m to which the condition is satisfied can be computed
as f∨(m(S1),m(S2), . . .), where S1, S2, etc. are all the subsets of the set
{1, 2, . . . , n} that have at least k elements.
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Limitations of the above natural idea. In the above natural-idea approach,
to find the desired degree m, we need to compute m(S) for a large number of
sets – close to 2n. For large n, this number becomes astronomical.

Need to be efficient. Because of this limitation, it is desirable to come up with
an efficient way to define and compute the desired degree.

What is known. For the case when the “and”-operation is

f&(a, b) = max(a+ b− 1, 0),

an efficient algorithm for estiating the desired degree m was proposed in [5].

Remaining problem: need to consider general “and”-operations. We
want our degree to reflect the practice of the corresponding discipline – e.g., of
the corresponding branch of medicine. In general, reasoning in different branch
of knowledge is best described by different “and”-operations.

This was first discovered when the first expert systems appeared. Historically
the first expert system was the system MYCIN that was focused on a certain
class of blood diseases; see, e.g., [3]. Designers of this system spent a lot of time
and efforts searching for the “and”-operation that provides the most accurate
description of the reasoning of the medical doctors dealing with these diseases.
At first, they were under the impression that they found universal laws of hu-
man reasoning. However, when they tried to apply the same “and”-operation
to a different application area – geophysics – they quickly found out that the
resulting degrees for “and”-statements were very different from what the actual
geophysicists produced – and thus, that a different “and”-operation is needed
for geophysical applications.

This difference in “and”-operations make perfect sense:

– in medicine, one needs to be very cautious, and to prescribe some cure only
if we are reasonable sure that it will help – mistakes can deadly;

– in contrast, in mining applications of geophysics, if a company waits too
long for a perfect conformation that there is oil in a field, it may lose to
competitors – too much caution can ruin a company.

Since we want to take care of all possible applications where the “at least k
out of n” idea is used, we need to extend the above-mentioned feasible algorithm
for a specific “and”-operation to the case of general “and”-operations.

What we do in this paper. In this paper, we solve this problem by providing
an efficient algorithm for general “and”-operations.

2 Our solution

How can we describe a general “and”-operation: a brief reminder. It is
known (see, e.g., [7]) that any continuous “and”-operation can be approximated,
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with any given accuracy ε > 0, by a strictly Archimedean “and”-operation, i.e.,
operation of the type

f&(a, b) = f−1(f(a) · f(b)) (1)

for some continuous strictly increasing function f(a). Here, f−1(a) means the
inverse function, i.e., the function for which f−1(b) = a if and only if f(a) = b.

Since, based on finitely many experiments with real experts, we can only
determine the “and”-operation with some accuracy, this means that we can
have a strictly Archimedean “and”-operation that is in perfect accordance with
the experimental data. Thus, to describe actual expert reasoning, we can always
use strictly Archimedean “and”-operations.

Our first idea. The use of strictly Archimedean “and”-operation means, in
effect, that:

– if we re-scale degrees, i.e., replace each degree mi with the degree m′
i =

f(mi), then we can simply use multiplication as “and”, and
– at the end of computations, we need to transform the resulting degree m′

back to the original scale by taking m = f−1(m′).

So this is our idea of how to estimate the desired degree m under a general
strictly Archimedean “and”-operation (1):

– first, we transform the original degrees mi into re-scaled ones m′
i = f(mi),

– then, we use the values m′
i to perform multiplication-based estimation of the

degree m, and
– after that, compute the desired estimate m as f−1(m).

Our second idea: how to perform multiplication-based computations.
We have reduced the problem for a general “and”-operation to its specific case,
when the “and”-operation is simply multiplication. So, to solve the general
problem, it is sufficient to solve it for the case of the product “and”-operation
f&(a, b) = a · b.

For this operation, the “and”-formula is similar to the probabilistic case,
where for two independent events, the probability that both will occur is equal to
the product a ·b of the probabilities a and b of each of the two events. Probability
theory exists for many centuries, many algorithms have been designed for it. So,
for the multiplication “and”-operation, a natural way to provide an estimate is
to view the values m′

i as probabilities and to estimate the probability that at
least k out of n symptoms are satisfied.

To use this idea, we need to come up with the efficient algorithm for com-
puting this probability.

Comment. Of course, it is important to emphasize that the use of probabilities
is simply a mathematical trick, it does not mean that expert-produced degrees
mi somehow became probabilities.

How to effectively compute the desired probability: analysis of the
problem. The probability m′ that at least k out of n events occur can be
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described as
m′ = 1− p1 − p2 − . . .− pk−1, (2)

where pj is the probability that exactly j events happened. So, to compute m′,
it is sufficient to be able to estimate the values pj .

One can easily check that we have

pj =
∑

S:|S|=j

∏
i∈S

m′
i ·
∏
i̸∈S

(1−m′
i)

 , (3)

where |S| denotes the number of elements in the set S. Each term in this sum
can be equivalently described as∏

i∈S

m′
i ·
∏
i ̸∈S

(1−m′
i) = p ·

∏
i∈S

ri, (4)

where

p
def
=

n∏
i=1

m′
i (5)

and

ri
def
=

m′
i

1−m′
i

. (6)

Thus, we have

pj =
∑

S:|S|=j

(
p ·
∏
i∈S

ri

)
. (7)

All the terms in the sum have a common factor, thus we can take this factor out
of the sum and get:

pj = p · sj , where sj
def
=

∑
S:|S|=j

∏
i∈S

ri. (8)

So, the question is how to compute the values sj .
For j = 1, we simply have

s1 =

n∑
i=1

ri. (9)

Once we know sj , we can try to help to compute sj+1 by multiplying sj and s1.
Both sj and s1 are sums corresponding to sets S of k elements and a set of a
single element.

– When the single element is not in S, we get the product corresponding to
their union – set of k + 1 elements.

– But when the single element is in S, then we get a product in which the
ratio ri corresponding to this element is repeated twice, i.e., we have this
ratio squared.
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In other words, when we multiply sj and s1, we get the sum sj and some auxiliary
term. When we try to get this term for j in terms of a similar term for j − 1,
we will get an auxiliary term in which in each product, one of the probabilities
is cubed, etc.

In general, we therefore need to compute the terms

sj,a
def
=

∑
S:|S|=j

∑
i∈S

rai ·
∏

ℓ ̸=i,ℓ∈S

rℓ

 . (10)

For j = 1, we simply have

s1,a =

n∑
i=1

rai . (11)

In these terms, for sj , we have

sj = sj−1 · s1 − sj−1,2. (12)

In general, similarly to what we discussed a little earlier, we get the following
equality:

sj,a = sj−1 · s1,a − sj−1,a+1. (13)

So, according to (12), to compute sj , we need to compute sj−1,2. To compute
this terms, according to (13), we need to compute sj−2,3, etc., until we get s1,a′

for some a′ – which is easy to compute.
So, we arrive at the following algorithm.

3 Resulting algorithm

What is given. We know the degrees m1, . . . , mn of each of n symptoms. We
also know the function f(x) for which the “and”-operation f−1(f(a), f(b)) best
describes the reasoning of people from this particular application area.

What we want. We want to estimate the degree to which, based on this infor-
mation, at least k symptoms are present.

Preliminary stage. We compute the values m′
i = f(mi), ri = m′

i/(1 − m′
i),

and p = (1−m′
1) · (1−m′

n).

Main stage.

– We compute the values s1,a = (r1)
a + . . . + (rn)

a for a = 1, . . . , k − 1. In
particular, for a = 1, we get s1 = s1,1.

– Then, for j = 2, . . . , k, we do the following:

• we use the formula (13) to sequentially compute the values s2,j−1, s3,j−2,
. . . , sj−1,2 and then

• we use formula (12) to compute sj .
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Final stage. We compute m′ = 1− p · (s1 + . . .+ sk−1) and m = f−1(m′).

Comment. One can check that:

– on the preliminary stage, we perform O(n) steps;
– on the main stage, we perform O(k · n) steps; and
– on the final stage, we perform O(k) steps.

So, the overall number of steps is O(k · n). In particular, for any given k, this
algorithm requires computation time that is linear in n.
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