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Abstract. Interval-valued and type-2 fuzzy techniques were designed to
provide a more adequate representation of expert knowledge than the tra-
ditional (type-1) fuzzy techniques. Somewhat unexpectedly, they also of-
ten turn out to be more effective even when there is no expert knowledge
at all – when we are simply using fuzzy rules to fit experimental data. In
precise terms, for the same number of parameters, interval-valued and
type-2 systems often provide a better fit for the data and/or better qual-
ity control than traditional (type-1) fuzzy techniques. In this paper, we
provide a theoretical explanation for this surprising phenomenon.
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1 Formulation of the problem

In this paper, our objective is to explain why interval-valued and type-2 fuzzy
techniques are often more effective than the more traditional (type-1) fuzzy
techniques. In order to formulate the phenomenon that we are trying to explain,
we need to briefly recall:

– why fuzzy techniques were invented in the first place,
– why interval-valued and type-2 techniques appeared, and
– in what exactly sense these techniques are more effective.

Why fuzzy in the first place: a brief reminder. In the 1960s, Lotfi Zadeh
– who at that time was one of the world’s main specialists in automated control
and one of the most popular textbook on this topic – noticed that in many
practical situations, the control that was optimal (based on the existing models
of the corresponding systems) was often less effective that control by expert
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controllers. A natural explanation is that the models on which optimization was
based were approximate. These models clearly did not fully adequately reflect
the expert knowledge – and the experts were often indeed able to point out some
knowledge that the existing models missed.

If this additional knowledge was formulated in precise mathematical terms,
it would have been relatively easy to incorporate it into the models used to find
the control. The challenge was that this missing knowledge was formulated in
terms of imprecise (“fuzzy”) words from natural language, like “small” or “about
1”. For example, many people know how to drive, and they can describe their
driving strategy. For example, if you ask an experience driver what to do when
the car is on the freeway going 100 km/h and the car in front at a distance 10
m slows down to 95, most people will correctly reply “brake a little bit”. But an
automatic controller cannot understand this recommendation, it needs to know
with what force – and for how many milliseconds – to press the brakes.

We therefore need techniques for translating such imprecise knowledge into
precise computer-understandable terms. Zadeh called such techniques fuzzy –
and came up with several ideas on how to perform this translation; see, e.g.,
[1–6].

Traditional (type-1) fuzzy techniques: description and limitations. In
the first historically fuzzy techniques provided by Zadeh, each term like “small”
was represented by a function m(x) that assigns, to each possible value x of the
corresponding quantity, a degree to which this value x satisfies the desired prop-
erty (e.g., a degree to which x is small). This function is known as a membership
function ot, alternatively, a fuzzy set. The idea is to elicit these degrees from the
expert, i.e., to ask the expert to mark this degree, e.g., on the interval [0, 1], so
that:

– to values x are which are definitely not small, we assign the degree m(x) = 0,
– to values x which are definitely small, we assign the degree m(x) = 1, and
– to values x that are somewhat small are assigned degrees m(x) between 0

and 1.

The main limitation of this approach is that:

– similarly to how an expert cannot precisely describe what exactly control
value to apply – all he/she can say is that this control can be small.,

– the same expert has similar trouble describing his/her exact degree of con-
fidence that a given control value x is small. F

For example, to many people, 25 C is comfortable while 28 C may be somewhat
too hot (especially when there is humidity). But is the degree of hotness 0.8?
0.81? 0.79? This is difficult to distinguish.

To be able to more adequately describe expert knowledge, Zadeh himself
suggested alternatives to the type-1 techniques. For example:

– instead of asking the expert to assign a single number m(x), we can ask
the expert to assign an interval [m(x),m(x)] of possible values; the resulting
techniques are known as interval-valued fuzzy techniques;
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– alternatively, we can allow the expert to mark his/her degree of confidence
that x is small by words from natural language – and then use fuzzy tech-
niques to translate this word into precise terms; in this case, the resulting
degree m(x) is not a single number, but a fuzzy subset of the interval [0, 1];
the resulting techniques are known as type-2 fuzzy techniques.

These techniques indeed lead to a more adequate representation of expert knowl-
edge; see, e.g., [3].

Fuzzy techniques in situations without expert knowledge. Originally,
fuzzy techniques were invented to describe expert knowledge. Later, it turned
out that these techniques are also effective in situations when there is no expert
knowledge at all. Namely, when we want to fit the data, it is often effective:

– to find the fuzzy rules that best describe this data, and then
– to use these rules to predict how the system will react to different inputs.

This effectiveness makes perfect sense: this is how we learn to do things, we
use the data to come up with informal (fuzzy) rules. Annd since we humans are
a product of billions of years of improving evolution, this must be an effective
strategy.

In situations without expert knowledge, interval and type-2 methods
are more effective, but why? Interesting, it turned out that in situations
without expert knowledge, interval-valued and type-2 fuzzy techniques often are
more effective. Namely, when we compare type-2 and interval or type-2 methods
with the same number of parameters, interval and typ2-2 methods provide a
more accurate description of the phenomenon and/or a better quality control;
see, e.g., [3]. But why?

It is clear why interval-valued and type-2 technique are more effective when
the objective is to represent expert knowledge, but why are they more effective
in situations when there is no expert knowledge?

What we do in this paper. In this paper, we provide a theoretical explanation
for the (somewhat surprising) effectiveness of interval-values and type-2 fuzzy
techniques.

2 Our explanation

In order to explain the above puzzling phenomenon, let us briefly recall why, in
general, some approximations are more accurate and some are less accurate.

General idea: the more options, the better the approximation. In gen-
eral, there are many ways to approximate a dependence, there are many possible
families of approximating functions. For each family, there is a certain number
of different approximating options. Usually, the more options we have, the more
accurate the approximation.

We can illustrate this natural idea on the example of approximating numbers
from the interval [0, 1].
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– If we only have one option to approximate – and if we gauge the quality of an
approximation by the worst-case absolute value w of the difference between
the actual value and its approximation – then the best option is to select
x1 = 0.5, then w = 0.5.

– If we are allowed 2 options, then the best way is to have x1 = 0.25 and
x2 = 0.75, in which case w = 0.25.

– In general, if we are allowed n options, then the best idea is to have

x1 =
1

2n
, x2 =

3

2n
, . . . , xi =

2i− 1

2n
, . . . , xn =

2n− 1

2n
,

in which case

w =
1

2n
.

Consequence: the more parameters, the better the approximation. In
practice, each parameter is represented in a computer with some accuracy ε. So,
if we denote the width of the range of possible values of this parameter byW , this
means that we can have W/ε possible distinguishable values of this parameter.

Thus, if we have p parameters, we have (W/ε)p possible options. Hence
clearly, the more parameters we have, the more options we have and thus, the
more accurate will be the approximation.

How is all this related to type-1 and interval-valued fuzzy techniques.
In principle, each degree m(x) can be any number from the interval [0, 1]. There
are infinitely many real numbers on the interval [0, 1]. However, in a computer,
we can only represent the degree m(x) with some accuracy. As a result, we have
only finitely many possible values of the degree

m1 < m2 < . . . < mM−1 < mM ,

for some M .
Similarly, while there are infinitely many actual values x of the corresponding

quantity, in a computer, we can only represent finitely many values

x1 < x2 < . . . < xN−1 < xN

for some N . Thus, a general membership function can be represented by a finite
number of degrees m(x1), . . . ,m(xN ) each of which takes values from the finite

set M def
= {m1, . . . ,mM}: m(xi) ∈ M.

Usual membership functions:

– first increase (in general, non-strictly) from 0 to 1,
– then maybe take the value 1 for some time,
– then decrease from 1 to 0.

So, for some k for which the value m(xi) is the largest, we have:

m(x1) ≤ m(x2) ≤ . . . ≤ m(xk−1) ≤ m(xk) ≥ m(xk+1) ≥ . . . ≥ m(xN ). (1)
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So, we have N values m(xi). These values must satisfy the monotonicity con-
straint (1) for some k.

What happens in the interval-valued case? In this case, for each x, we have an
interval [m(x),m(x)] of possible values of degree m(x), i.e., in effect, two values
m(x) ≤ m(x). So, when we consider the case of the same number of parameters
as with the type-1 representation, we need to only consider N ′ = N/2 possible
values of x. Let us denote these values by

x′
1 < x′

2 < . . . < x′
N ′ .

So we get the values m(x′
i) and m(x′

i). The values of each of the lower and upper
membership functions m(x) are m(x) must satisfy conditions similar to (1):

m(x′
1) ≤ m(x′

2) ≤ . . . ≤ m(x′
k′−1) ≤ m(x′

k′) ≥ m(x′
k′+1) ≥ . . . ≥ m(x′

N ′), (2)

m(x′
1) ≤ m(x′

2) ≤ . . . ≤ m(x′
k′−1) ≤ m(x′

k′) ≥ m(x′
k′+1) ≥ . . . ≥ m(x′

N ′), (3)

as well as the constraint

m(x′
i) ≤ m(x′

i) for all i. (4)

Resulting theoretical explanation.We plan to show that for the same N and
M , there are more tuples that satisfy the constraints (2)–(4) than tuples that
satisfy the constraint (1). As we have mentioned earlier, this will clearly imply
that interval-valued fuzzy techniques can lead to a more accurate approximation
than type-1 – which is exactly the empirical fact that needs to be explained.

Indeed, for every sequence of values m(xi) that satisfies the monotonicity
constraints (1), we can form the interval-valued approximation in which:

– for 2i ≤ k, we have m(x′
i) = m(x2i−1) and m(x′

i) = m(x2i), and
– for 2i > k, we have m(x′

i) = m(x2i) and m(x′
i) = m(x2i−1).

One can easily check that in this case, conditions (2)–(4) are automatically
satisfied. This means that interval-valued approximation has at least as many
approximating options as the type-1 approximation.

However, there are interval-valued approximations that cannot be obtained
this way. Indeed, in each scheme obtained this way, when 2i ≤ k, we have
m(x′

i) ≤ m(x′
i+1). However, this is not always true for interval-valued fuzzy

sets: e.g., we can have m(x′
i+1) < 1 but m(x′

i) = 1. Thus, with the same num-
ber of parameters, interval-valued approximation scheme indeed contains more
approximating options than the type-1 approximating scheme, and thus, poten-
tially leads to higher approximation accuracy.

Comment. We provided a detailed explanation only for interval-valued tech-
niques, but a similar argument works for general type-2 techniques: in this case,
we have even fewer constraints.
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5. V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic,
Kluwer, Boston, Dordrecht, 1999.

6. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.


