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Abstract. There are two cases in which it has been empirically shown
that a convex combination of the interval’s endpoints works better than
any other combination: processing interval data and dealing with situ-
ations in which we know both approximate probability and possibility
and we need to make a decision. In this paper, we provide an explanation
of both phenomena.

Keywords: interval uncertainty, convex combination, data processing,
possibility, decision making

1 Formulation of the problem

In this paper, we provide a theoretical explanation for the following two different
phenomena in which, empirically, a convex combination γ · x+ (1− γ) · x of the
endpoints of an interval [x, x] leads to the best results.

First phenomenon. The first phenomenon deals with data processing, namely,
with one of its simplest cases: linear regression, i.e.., with determining the coef-
ficients ai of a linear dependence

y = a0 + a1 · x1 + . . .+ an · xn (1)

based on the approximately known values xi and y.

Specifically, in several situations j, we know:

– bounds [xij , xij ] for the corresponding values xij of the quantity xi, and

– bounds [y
j
, yj ] for the corresponding value yj of the quantity y.
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In situations in which we know the exact values of xij and yj , a natural way to
estimate the coefficients ai is by using the Least Squares method, i.e., find the
values aj for which the following expression attains the smallest possible value:∑

j

(yj − (a0 + a1 · x1j + . . .+ an · xnj))
2. (2)

It turns out (see, e.g., [5, 15]) that in the interval-valued case, the best results
are obtained if, for an appropriate γ ∈ [0, 1], we apply the Least Squares method
to the values

xij = γ · xij + (1− γ) · xij and

yj = γ · yj + (1− γ) · y
j
. (3)

Comment. Since processing fuzzy data is, in effect, equivalent to processing α-cut
intervals for each γ (see, e.g., [1, 6, 9, 12, 13, 16]), the same technique can be thus
naturally extended to the case when we know xij and yj with fuzzy uncertainty.

Second phenomenon. The second phenomenon deals with decision making in
situations in which we know both:

– approximate probabilities p̃i of different outcomes i, and
– possibility of different outcomes, i.e., in effect, the largest possible probability

pi of these outcomes.

It turns out (see, e.g., [2]) that empirically, the best results are obtained if we
based our decisions on the probabilities pi which are equal to a convex combi-
nation of approximate probability and possibility:

pi = γ · pi + (1− γ) · p̃i. (4)

What we do in this paper. In this paper, we provide an explanation for both
phenomena.

2 Explanation for the first phenomenon

What we want. We want a technique that, given an interval [x, x], selects a
value from this interval. Let us denote the selected value by s(x, x), where s
comes from “select”.

Analysis of the problem. The empirical values xi and y are, usually, values
of physical quantities. A numerical value of a physical quantity depends on the
choice of the measuring unit and of the starting point.
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– If we replace the measuring unit with another unit which is a > 0 times
smaller, then all numerical values will multiply by a: x 7→ a ·x. For example,
if we replace meters with centimeters, then 1.7 m becomes 100·1.7 = 170 cm.

– If we replace the original starting point with a new one which is b units
earlier, then this value b will be added to all numerical values: x 7→ x + b.
For example, if we replace the 0 point of the Celsius temperature scale with
the 0 point of the Klevin scale – which is approximately 273 degree earlier,
then 20 C becomes 10 + 273 = 293 K.

– In general, if we replace both the measuring unit and the starting point, we
get a linear transformation x 7→ a · x+ b.

Both changes – of the measuring unit and of the starting point – change the
numerical value but do not change the physical quantity itself: e.g., a person
who is 1.7 m tall is exactly 170 cm tall. Thus, it is reasonable to require that
the selection function should not be affected by these changes. For example,
the selection corresponding to 1.7 and 1.8 m, when described in centimeters,
should be exactly the same as the selection corresponding to 170 and 180 cm.
In precise terms, for general a and b and for all x < x, this natural property
takes the following form: if a = s(x, x), then X = s(X,X), where X = a · x+ b,
X = a · x+ b, and X = a · x+ b. In other words, we should always have:

s(a · x+ b, a · x+ b) = a · s(x, x) + b. (5)

Main result of this section. Let us prove that the selection function that
satisfies the property (5) has the desired form – of the convex combination. Let
us denote the value s(0, 1) by γ. By definition of the selection function, it must
return the value from the input interval. Thus, we have γ ∈ [0, 1], i.e., 0 ≤ γ ≤ 1.

Now, for any xi < xi, let us take a = xi −xi, b = xi, x = 0 and x = 1. Then,

a · x+ b = (xi − xi) · 0 + xi = xi,

a · x+ b = (xi − xi) · 1 + xi = xi,

and thus, the formula (5) takes the following form:

s(xi, xi) = (xi − xi) · γ + xi = γ · xi + (1− γ) · xi.

3 Explanation for the second phenomenon

Why do we need a different explanation? At first glance, it may seem that
we do not need an additional explanation, since we already have a one. But the
above explanation only applies to physical quantities whose numerical values
depends on the choice of the measuring unit and the starting point. However, in
the second phenomenon, we deal with probabilities – and the numerical value of
probability is absolute.
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So what do we do. Since we cannot directly deal with probabilities, let us take
into account where these probabilities are used. As we have mentioned earlier,
these probabilities are used to make decisions. Let us therefore briefly recall how
decisions are made – or, to be more precise, how decisions should be made by
rational decision makers. Such recommended decisions are dealt with by decision
theory: see, e.g., [3, 4, 7, 8, 10, 11, 14].

Decision theory: a brief reminder. To make appropriate decisions, it is
important to properly describe people’s preferences. For this purpose, decision
theory has the notion of utility – that enables us to describe preferences in
numerical form.

To introduce this notion, we need to select two alternatives:

– a very good alternative A+ that is better than anything that can actually
happen, and

– a very bad alternative A− that is worse than anything that can actually
happen.

Now, to define the utility of each alternative A, we need to compare this alter-
native, for different values p ∈ [0, 1], with lotteries L(p) in which:

– we get A+ with probability p and
– we get A− with the remaining probability 1− p.

When p ≈ 0, the lottery L(p) is close to the very bad alterative A−. We
selected A− to be worse than anything that we will actually encounter, so we
conclude that L(p) is worse than A; we will denote this by L(p) < A.

Similarly, when p ≈ 1, the lottery L(p) is close to the very good alterative
A+. We selected A+ to be better than anything that we will actually encounter,
so we conclude that A is worse than L(p): A < L(p).

Clearly, the larger the probability p of the getting the very good alternative,
the better the lottery: if p < q, then L(p) < L(q). Thus:

– if L(q) < A and p < q, then we have L(q) < A, and
– if A < L(p) and p < q, then we have A < L(q).

So, the set {p : L(p) < A} is closed under adding smaller numbers, and the set
{p : A < L(p)} is closed under adding larger numbers. And there can be no more
than one value p for which A and L(p) are equivalent: when A ∼ L(p) and p < q,
then L(p) < L(q) implies that A < L(q) – thus, A ̸∼ L(q). So, there exists a
threshold value

u(A)
def
= sup{p : L(p) < A} = inf{p : A < L(p)}

such that:

– if p < u(A), then L(p) < A, and
– if p > u(A), the A < L(p).
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This threshold value is called the utility of the alternative A. Due to the above
property, for every positive number ε > 0, no matter how small it is, we have
L(u(A) − ε) < A < L(u(A) + ε). When ε is sufficiently small, it is not possible
to feel the difference between the probabilities u(A)− ε, u(A), and u(A) + ε. In
this sense, we can say that the alternative A is equivalent to the lottery L(u(A))
in which:

– we get A+ with probability u(A) and
– we get A− with the remaining probability 1− u(A).

We will denote this equivalence by A ≡ L(u(A)).
Since each alternative A is equivalent to the lottery L(u(A)) and the best lot-

tery L(p) is the lottery with the largest probability p, we can therefore conclude
that the alternative A is better than the alternative B if and only if u(A) > u(B).

The numerical value of utility depends on our selection of A− and A+. It can
be shown that if we select a different pair (A′

−, A
′
+), then instead of the original

utilities u(A), we will get u′(A) = a · u(A) + b for some constants a > 0 and b
that only on the two pairs (A−, A+) and (A′

−, A
′
+). Thus, similarly to physical

quantities, utility is defined modulo a linear transformation.
How can we use this notion to make a decision? Ideally, for each possible

decision, we know what are possible outcomes Ai, and what is probability pi
of each outcome. By using the above description, we can determine the utility
ui of each outcome. Thus, the result of this decision is equivalent to a lottery
in which we get the outcome Ai with probability pi. Each outcome is, as we
have mentioned, equivalent to a lottery in which we get A+ with probability ui

and A− with the remaining probability 1− ui. So, the result of each decision is
equivalent to a two-stage lottery, in which:

– first, we select i so that each i has probability pi, and then
– depending on what i we selected, we select A+ with probability ui and A−

with the probability 1− ui.

As a result of this two-stage lottery, we get either A+ or A−. The probability u
of getting A+ can be determined by using the law of total probability

u = p1 · u1 + . . .+ pn · un. (6)

In mathematical terms, this formula described the expected value of utility.
Thus, each decision is equivalent to a lottery in which we get A+ with prob-

ability u and A− with the remaining probability. By definition of utility, this
means that the utility of this possible decision is equal to u. Thus, we need to
select a decision for which the expected utility u is the largest possible.

Resulting explanation. Since we are interesting in recommendations to deci-
sion making, instead of the probabilities p̃ and p, let us consider the correspond-
ing utilities

ũ = p̃ · u+ + (1− p̃) · u− = p̃ · (u+ − u−) + u− (7)
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and
u = p · u+ + (1− p) · u− = p · (u+ − u−) + u−, (8)

where u+ is the utility of the situation when the given event occurs, and u−
is the utility of the situation in which this event does not occur. Since p is the
upper bound on the possible probabilities, we must have p̃ ≤ p. So:

– if the event is favorable for us, i.e., if u− < u+, then we have ũ ≤ u;
– vice versa, if the event is not favorable for us, i.e., if u+ < u−, then we have

u ≤ ũ.

In these terms, what we want to have is the utility

u = p · u+ + (1− p) · u− = p · (u+ − u−) + u− (9)

that we shall actually use for decision making.
If ũ = u, then it makes sense to use this value as the desired utility, i.e., to

take u = ũ = u. In the case of ũ ̸= u, we need to come up with a mapping
u = s(ũ, u) that transforms the two utility values into a single utility value.
Since, as we have mentioned, utility is defined modulo a linear transformation,
it makes sense to require that this mapping should not change if we apply some
linear transformation, i.e., if we use a different pair (A−, A+). In precise terms,
this means that the function s(ũ, u) should satisfy the following requirement:

s(a · ũ+ b, a · u+ b) = a · s(ũ, u) + b. (10)

This is exactly the same requirement as formula (5), and we have already shown,
in the previous section, that when u− < u+ and thus, ũ < u, this requirement
leads to

u = s(ũ, u) = γ · u+ (1− γ) · u. (11)

When u+ < u− and u < ũ, the similar derivation leads to

u = s(ũ, u) = γ′ · ũ+ (1− γ′) · u (12)

for some γ′, which leads to the formula (11) for γ = 1− γ′. So, in both case, we
get the formula (11).

Substituting the expressions (7)–(9) for u, u, and ũ into the formula (11), we
get

p · (u+ − u−) + u− =

γ · (p · (u+ − u−) + u−) + (1− γ) · (p̃ · (u+ − u−) + u−), (13)

i.e., if we open parentheses:

p · (u+ − u−) + u− =

γ · p · (u+ − u−) + γ · u− + (1− γ) · p̃ · (u+ − u−) + (1− γ) · u−. (14)

One can easily see that terms proportional to u− cancel each other, so we have

p · (u+ − u−) = γ · p · (u+ − u−) + (1− γ) · p̃ · (u+ − u−). (15)
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if we divide both sides of this equality by u+ − u−, we get:

p = γ · p+ (1− γ) · p̃,

which is exactly the desired formula (4). Thus, we get an explanation for the
second phenomenon as well.
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