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Abstract. Empirical studies show that a proper sense of belonging — to
the university, to the department, to the profession — is important for
students to succeed. To help students develop this sense, it is desirable
to have quantitative models describing how sense of belonging affects
student success. In this paper, we show that while we can come up with
a reasonable quantitative model by using general model building tech-
niques, we can get a more adequate model if we use fuzzy techniques,
techniques that take into account expert’s degrees of certainty.
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1 Formulation of the problem

Challenge: retention rates are lower than we would like. In many disci-
plines including Computer Science, retention remains a big problems. After the
first semester, almost half of the students change majors.

This cannot be explained by the students’ unpreparedness — at most uni-
versities, to sign for the Introduction to Computer Science class, students need
to successfully pass several math-related classes that make them well prepared.
This cannot be fully explained by the students suddenly realizing that Com-
puter Science is not what they thought it would be: Computer Science and Al
are all over the media nowadays. Of all possible disciplines, Computer Science
is arguably the most popularized of all disciplines. And it is not popularized as
supposedly an easy profession: most popular articles are written by journalists
who do not fully understand the current successes and who therefore emphasize
how difficult this subject is.

So what is the explanation for lower-than-expected retention rates?

One of the most important factors is sense of belonging. While retention
rate is somewhat similar in most universities, it still differs a lot. Researchers
performed comparative survey studies to find out what are the main factors
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that affect student retention — and student success in general. Most of these
studies show that one of the most important factors is whether the students gain
the sense of belonging — belonging to the college, belonging to the department,
belonging to the profession, etc.; see, e.g., [5] and references therein.

Resulting problem: it is desirable to have quantitative models. Since the
sense of belonging is very important, it is desirable to better cultivate this sense.
This way, we will increase student retention and student success. Researchers
and practitioners have been working on ways of doing that [5].

However, up to now, this is mostly done on a qualitative semi-empirical
level. General experience of science shows that quantitative models usually lead
to better performance. It is therefore desirable to have a quantitative model of
this phenomenon.

What we do in this paper. In this paper, we provide the first approximations
to the desired quantitative model.

The structure of this paper. In Section 2, we provide a more detailed de-
scription of the above phenomenon. In Section 3, we use general model-building
techniques to build the first quantitative model. In Section 4, we explain the
limitations of the first model, and we use fuzzy techniques — techniques that
take into account the uncertainty (fuzziness) of expert knowledge — to come up
with a more adequate quantitative model.

2 Analysis of the problem

Too strong sense of belonging can be counterproductive: general idea
and examples. In the previous section, we focused on situations where students
are not as successful as they can be because of their low sense of belonging. To
design an adequate mathematical model describing how student success depends
on the sense of belonging, we need to take into consideration not only cases of
low sense of belonging, but the whole range of possible values of this sense, from
low to normal to high.

And for high sense of belonging, empirical evidence shows the opposite effect:
when the sense of belonging is too strong, the success level decreases. Let us give
a few examples.

In our city of El Paso, Texas, many students have a very strong sense of
belonging to the community. Because of this, frequently, when a smart high
school student gets accepted to one of the out-of-town top schools like MIT, this
student either rejects this offer right away, or goes out to this school, studies there
(reasonably successfully) for a year or even for a semester, and then transfers to
a school back home. In this case, clearly, this student’s strong sense of belonging
is counterproductive for the student’s success. And when this student graduates
from a local university, he/she does not want to leave town to get a good job
elsewhere, so this student agrees to a not so interesting (and a much-lower-
paying) job in the city.
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Similarly, because of an unhealthily strong sense of belonging to a family,
people stay for years and even decades in an unhappy — and often abusive —
relationship. Because of too strong sense of belonging to old ways of life, many
people resist changes, even changes that would make everyone more successful
and more happy.

In general, human progress is driven by creativity: whenever the humanity
faces a challenge, we find a creative solution to the problem. And creative means
different from what was common before. So, to be creative, we cannot have a
complete sense of belonging to all our communities and all their traditions and
ways of life, we need to be open to new ideas, even idea that are different from
what the community currently believes.

Also, it is always good to retain a healthy level of caution (and even mistrust).
For example, when coding, it is good to feel a member of the community and
thus, to believe in the ways of programming that are recommended and trusted
by the community, but it is always a good idea to still check and test your code
— since sometimes, the community beliefs miss a point. There is even anecdotal
evidence that programmers who grew up in not perfectly safe communities —
e.g., in big cities where there are unsafe areas that need to be avoided and where
pickpockets or even robberies are common — get a healthy habit of checking
everything, and that habit naturally extends to their coding — which makes
their code more reliable.

These examples show that too much sense of belonging can be detrimental
to success. Vice versa, if you analyze successful people, many of them have
a limited sense of belonging, they never felt fully at home — examples include
Albert Einstein (see, e.g., [6]) and Elon Musk (see, e.g., [7]). This is also reflected
in the fact that many successful people have impostor syndrome — when while
they are actually well accepted by their communities, they do not feel that
they fully belong, they feel that they are impostors who are accepted largely by
mistake.

Comments. Since the objectives of successful people are somewhat different from
the objectives of the corresponding community,

— sometimes, their activity leads to successes — and

— sometimes, it leads to a failure, when their unorthodox solutions — which
make perfect sense from their somewhat different viewpoint — turn out to
be detrimental to the community; there are many such examples in history,
when a charismatic leader led his community to a disaster.

Since their objectives are somewhat different, successful people often do not see
the difference between ideas that will be beneficial to their community and ideas
that will be detrimental to this community. This can be seen on the example of
creative people.

For many writers, poets, and musicians, what they value most from their
artistic heritage is often different from what the community perceives as their
best work. For example, the Russian poet Mayakovski hated it when many people
asked him to recite his poem “Oblako v shtanah” (“A cloud in pants”) that many
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people perceived as his best work — while he himself considered his other poems
as much better ones.

Same phenomenon can be observed with scientists: what a scientist considers
his/her best paper is often not what has the largest number of citations — and
is, thus, considered the best by the research community. Modern Hollywood is
another good example of this phenomenon: movie companies try their best to
predict which movie project will succeed, but very frequently:

— a multi-million-dollar movie that everyone hoped would be a mega-success
turns out to be a failure, while
— a low-budget independent film becomes a mega-hit.

The Nobel-winning Russian poet Boris Pasternak — of the “Doctor Zhivago”
fame — described this phenomenon poetically, than a creative person is usually
not able to predict which of his works will be a success and which a failure:
“Porazen’ya ot pobedy ty sam ne dolzhen otlichat™.

This phenomenon may be the reason why in the original version of Bloom’s
taxonomy, a widely framework for categorizing educational goals, ability to eval-
uate was considered the highest level of knowledge [2] — because even most cre-
ative persons are deficient in this ability.

The desired dependence is one of the examples of inverted U-shape
dependencies. As we have mentioned earlier, when there is no sense of be-
longing, students are, in general, not every. As the sense of belonging becomes
stronger, students become more and more successful — until the value of this
sense reaches a certain threshold, after which any further increase in sense of
belonging makes the success rate lower. Such dependencies — when a function
first increases and then decreases — are ubiquitous. They are known as inverted
U-shaped dependencies, since their graphical representation reminds an inverted
letter U.

The first example of an inverted U-shape dependence was obtained when
researchers analyzed how success depends on the effort or on the motivation;
see, e.g., [3,14].

3 First quantitative model

A usual strategy for designing a model: a brief reminder. Situations in
which we do not know the exact form of the dependence between two quantities
are ubiquitous in physics. In such situations, a usual strategy (see, e.g., [4,13]) is
to take into account that dependencies are usually smooth — even analytical, so
the function describing the dependence can be expanded in Taylor series. This
means, in effect, that as a good approximation, we can take the sum of the first
few terms of the Taylor expansion.

The more terms we take into account, the more accurate is our description.
As the first approximation, it makes sense to take the smallest number of terms
for which we can have a function that is consistent with our knowledge about
the desired dependence.
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Let us apply this strategy to our case. We are interested in describing how
the success y depends on some characteristic x: be it sense of belonging, or effort,
or degree of motivation. What do we know about this dependence?

— First, we know that in all these three cases, at first, the success level grows
when the value of the corresponding characteristic increases.

— Second, we know that the success level is limited: no matter how much
sense of belonging, motivation, or effort we exhibit, there are physical and
biological limits on how much we can learn in the course or how much we
can do.

Let us see what is the smallest number of terms in the Taylor expansion
y=ao+ay-r+ag- x> +... (1)
for which the resulting dependence is consistent with these two facts.

— If we only take into account the constant term — i.e., if we use y = ag as a
model — then the dependence y of z is not increasing, which contradicts to
the first fact. This means that this approximation is not enough, we need to
take more terms into account.

— If we take into account the first two terms in the Taylor expansion, i.e., if
we use y = ag + a1 - ¢ as a model, then for a; > 0 we get an increasing
dependence, but the resulting function is not bounded — which contradicts
to the second fact. This means that this approximation is also not enough,
we need to take more terms into account.

So, we need to take into account quadratic terms as well, i.e., we need consider
the following model:

y=ao+a-x+as- x> (2)
Here, a; > 0, and to make sure that the dependence is bounded, we need to take
as < 0.

This explains, at least on the qualitative level, the inverted U-shaped
dependence. One can easily check that the function (2) with as < 0 indeed
grows until some value and then starts decreasing — this is exactly what the
inverted U-shaped dependence is about. In other words, at least on the qual-
itative level, we get an explanation of the ubiquity of the inverted U-shaped
dependence.

4 Limitations of the first quantitative model and a more
adequate fuzzy-based quantitative model

Limitations of the first quantitative model. In the above model, it makes
sense to consider only the values x for which the success level y is non-negative.
One can check that for the quadratic dependence (2), the range of all such values
is divided into two subranges of equal width:
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— the subrange at which the function is increasing, and
— the subrange at which the function is decreasing.

Indeed, the desired range is the range [z_,z]| between the two roots z_ and
x4 of the quadratic equation y = 0, for which
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The derivative of the expression (2) — whose sign determines whether the function
is increasing or decreasing — has the form
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Since as < 0:

— for x < Z, we have 3’ > 0, so the function y(z) is increasing on the first
half-range [z_, Z]; and

— for # > 7, we have 3y’ < 0, so the function y(x) is decreasing on the second
half-range [T, z].

The fact that these subranges have the same width contradicts to common
sense, according to which on a larger part of the range, the deoendence is in-
creasing, and it is only decreasing on a smaller part of the range.

How can we improve this situation? The above-described usual strategy
for designing models only takes into account well-defined (“crisp”) parts of our
knowledge — e.g., that the function is increasing on some subrange or that it is
bounded. However, it is well known that a significant part of our knowledge is
formulated by using imprecise (“fuzzy”) words from natural language — such as
“small”, "very”, etc.

To describe this knowledge in precise computer-understandable terms, Lotfi
Zadeh designed special techniques that he called fuzzy; see e.g., [1,8,10-12,15].
Let us therefore use fuzzy techniques to design the corresponding model.

Let us use fuzzy techniques to design a new model. To apply fuzzy
techniques, we need to start with a description of our knowledge is commonsense
terms. In these terms, our knowledge can be described as follows: the success
comes when the sense of belonging is high but not too high.

In fuzzy techniques, the degrees are usually limited to the interval [0, 1]. So,
let us assume that both the sense of belonging x and the resulting level of success
y are characterized by numbers from the interval [0, 1].

— The simplest way to describe the degree to which z is high is to have

m(x) = z.
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— The simplest way to describe the hedge “too” (which is, in this case, equiva-
lent to “very”) is to use the square function: if the degree to which we have a
property is m, then the degree to which this property is very much satisfied
is m?2. So, the degree to which a level z is too high is ms.

— The usual way to describe negation is to use 1 — m: if the degree to which
a property is satisfied is m, then the degree to which this property is not
satisfied is equal to 1 —m. Thus, the degree to which the sense of belonging
is not too high is 1 — z2.

— How can we interpret “but”? From the logical viewpoint, “but” here simply
means “and”, and the reason why we use “but” and not “and” is that the two
statements combined by this connective are somewhat inconsistent with each
other. So, we can use the usual way to describe “and” in fuzzy techniques.
One of the simplest ways to describe “and” — and the simplest for which we
have a smooth dependence, in accordance with the previous section — is to use
the usual (“algebraic”) product. In other words, if our degrees of confidence
in two statements S and Sy are m, and ms, then we estimate our degree
of confidence in the statement S; & Sy as mi - mo. For our commonsense
statement, m; = x and mg = 1 — 22, so we arrive at the following model:

y=z-(1—a?). (6)

This is our second quantitative model for the dependence of success on sense of
belonging.

Our fuzzy-based model is more adequate than our first quantitative
model. As we have mentioned earlier, the main limitation of our first quantita-
tive model was that:

— for this model, the subranges at which the dependence y(x) is, correspond-
ingly, increasing and decreasing have the same width — while,

— according to our understanding, the increasing subrange should be wider
than the decreasing one.

Let us show that for the fuzzy-based model (6) for which y = x — 23, the
increasing subrange is indeed wider. Indeed, for the model (6), increasing means
that ¢/ > 0, i.e., that 1 — 322 > 0. This inequality is equivalent to 3z2 < 1, i.e.,
x9 <1/3 and z < \/m ~ 0.58.

Thus, for our fuzzy-based quantitative model, the width 0.58 of the increasing
subrange is indeed larger than the width 1 — 0.58 = 0.42 of the decreasing
subrange.

Comment. The arguments that we used to come up with our fuzzy-based model
are similar to the arguments used in [9] to explain the golden proportion.

In that paper, the author was looking for the value x that best satisfies the
property that this value is large but not too large. The arguments used in that
paper are largely similar to what we used in this section, the only difference is
that that paper used minimum to describe “and”.
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So, in that paper, the degree y to which the statement is satisfied is described

by a slightly different formula y = min(x, 1 — z?2). It turns out that the value x
for which degree is the largest possible is exactly the golden proportion

V5 —1

~ 0.62.
2

Tr =
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