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Abstract Normal distributions are ubiquitous, but many actual distributions are dif-
ferent from normal — for example, they are skewed. To describe such distributions, it
is desirable to have a few-parametric family that extends the family of normal distri-
butions. Several such families have been proposed. Empirically, the most effective
among them is the family of so-called skew-normal distributions first proposed by
A. Azzalini. In particular, this family is effective in econometrics. In this paper, we
provide a theoretical explanation for this empirical success. This explanation is sim-
ilar to an explanation of what ReLU activations functions are most effective in deep
learning.

1 Why skew-normal distributions: a challenge

Normal distributions and why they are ubiquitous: a brief reminder. In order
to understand our problem, let us first recall what are normal distributions and why
they are ubiquitous.

In many practical situation, we have many small independent factors affecting
the desired quantity. In such cases, according to the Central Limit Theorem (see,
e.g., [4]), the resulting distribution is close to Gaussian (normal), i.e., a distribution
with the following probability density function:
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)= e (-0,

where m is the distribution’s mean and o is its standard deviation.
In line with the Central Limit Theorem, many real-life distributions are well-
described by normal distributions.

Comments.

¢ The formula for the normal distribution can be described in the following equiv-

alent form:
F() = fo (x_’") ,

o

where

is the probability density function of the basic normal distribution, with mean 0
and standard deviation 1.

* A normal distribution is uniquely determined by its first two moments: the mean
value m and the standard deviation o. So, when the empirical distribution is
normal, we can easily find the exact shape of this distribution:

— first, based on the sample, we estimate the mean m and the standard deviation
o, and

— then, we use the normal distribution with these values of the mean and the
standard deviation.

The resulting distribution is symmetric relative to the mean m — and, as a result,
its third central moment is equal to 0.

Need to go beyond normal distributions. Although normal distributions are ubig-
uitous, not all empirical distributions are normal. Many empirical distributions are
skewed (asymmetric), i.e., have non-zero third central moment.

It is therefore desirable to have a few-parametric generalization of the class of
normal distributions that would allow to consider skewness.

Skew-normal distributions: a brief reminder. Many skew-related generalizations
of the class of normal distributions are possible, and many such families have been
proposed.

Empirically, one of such families — called skew-normal (see, e.g., [1]) — has been
most successful. The basic skew-normal distribution has the form

so(x) = fo(x) - Fo(et-x),

where Fy(x) is the cumulative distribution function corresponding to the basic nor-
mal distribution, and « is some real number. The probability density function s(x)
of a general skew-normal distribution can be obtained from the pdf of the basic one:
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for some m and ©.
In particular, skew-normal distributions are very effective in econometrics; see,
e.g., [3, 5, 7] and references therein.

Resulting challenge. How can we explain why this particular generalization of the
family of normal distributions turned out to be the most successful?

What we do in this paper. In this paper, we provide a possible explanation for the
success of skew-normal distribution.

It turns out that this explanation is similar to one of the possible explanations
of another empirical success — the success of rectified linear activation functions in
deep learning.

2 Why skew-normal: an explanation

We need a distribution that can be used in simulations. One of the main objec-
tives of determining the actual distribution of the analyzed phenomena is that we
will be able to simulate this phenomenon — by appropriate simulating this distribu-
tion.

From this viewpoint, it is necessary to recall how different probability distribu-
tions are simulated.

Two usual ways to simulate a distribution. Most computers have built-in random
number generators — hardware or software implemented — that generate either the
uniform distribution on the interval [0, 1] or the basic normal distribution, with mean
0 and standard deviation 1. To generate different distributions, we usually use these
random number generators.

There are two main ways to do it:

e we can either apply some easy-to-compute function to the results of a random
number generator,

* or we compute an easy-to-compute (e.g., linear) combination of several such
results.

Let us briefly recall both approaches.

First way to simulate a distribution. Let us start with the technique of applying
an easy-to-compute function to the results of the standard number generator. This
is, for example, how computers simulate a generic normal distribution, with mean
m and standard deviation o

* they use the standard random number generator to generate a random number X
distributed according to the basic normal distribution, and
* then they compute Y =m+0-X.
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One can easily check that the resulting random variable Y indeed has the desired
distribution.

The use of this technique for simulating distributions other than normal comes
from the easy-to-prove fact that all continuous distributions on a finite or infinite
interval — i.e., all distributions with continuous probability density functions — can
be obtained from each other by a continuous re-scaling of the interval. In precise
terms:

* if X is a random variable that is distributed according to the first distribution,
* then, for an appropriate increasing function g(x), the value ¥ = g(X) is dis-
tributed according to the second distribution.

The desired function g(x) is easy to find. Indeed:

* Let us denote the cumulative distribution function of the first distribution by
def
Fx (x) = Proby (X <x).

* Let us denote the cumulative distribution of the second distribution by

Fr () & Proby (¥ <y).

Then, for any strictly increasing function g(x), we have X < x «» g(X) < g(x). Thus,
the cumulative distribution function for g(X) has the property

Fyx) (g(x)) = Prob(g(X) < g(x)) = Proby (X <) = Fx (x).

So, for any y, if we, as usual, denote the x for which g(x) =y by g~!(y), then we
get Fy(x)(v) = Fx (g7(y)). Thus, to get the desired distribution for g(X), we need to
make sure that we always have Fy (y) = Fx(g~'(y)). In other words, for x = g~ !(y),
for which y = g(x), we need to have Fy(g(x)) = Fx (x). Thus, if we apply the inverse
function FY’l to both sides of this equality, we get the explicit formula for the desired
re-scaling function:

g(x) = Fy ' (Fx (x)).

Second way to simulate a distribution. When all we have is a random number
generator for the uniform distribution, then one of the possible ways to simulate a
normal distribution is to use the above-mentioned Central Limit Theorem, according
to which the distribution of the sum of a large number of independent random vari-
ables is close to normal. Thus, we can form the sum of several uniformly distributed
random variables — and we will get a good simulation of a normal distribution.

For independent normal random variables, their sum — and, more generally, their
linear combination is also normally distributed.

Main idea behind our explanation. We need a non-normal distribution. Since nor-
mal distributions are ubiquitous, all computer systems already have a normal distri-
bution. So a natural idea is to apply some function to the normal random variable.
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As we have mentioned, this does not restrict the class of distributions, since all
continuous distributions can be obtained from each other by applying some function
— this is one of the usual ways to simulate different distributions.

Applying a linear function will still keep the resulting distribution normal. So, to
simulate a probability distribution that is different from normal, we need to us apply
a nonlinear function.

From the practical viewpoint, the faster-to-compute this nonlinear function, the
better. Thus, we need ot use the fastest-to-compute nonlinear functions.

So what are the fastest-to-compute nonlinear functions?

What are the fastest-to-compute nonlinear functions? To answer this question,
let us recall which computer operations are the fastesr. In a computer, the fastest
possible operations are:

e unary minus — it changes just one bit, the sign bit, and
* min and max — that require, on average, 2 bit operations.

Indeed:

* In 1/2 of the cases, the two numbers have different first bits, i.e., 0 and 1. So, by
applying only one bit operation — namely, by comparing the first bits of the two
numbers — we already know which number is larger.

* 1In 1/4 of the cases, the first bits are equal, but the second bits are different. In this
case, we need 2 bit comparisons to decide which number is larger.

» In general, in 1/2* cases, the first k — 1 bits are equal, but the k-th bits are differ-
ent. In this case, we need & bit comparisons to decide which number is larger.

So, the average number b of bit operations needed to compute min or max is equal
to the following:

1 1 1 1 1
b=1-342: 5+t k=1) gk p b kb D)o+ (1)
To compute the value b, let us divide both sides of the formula (1) it by 2. Then we
get:

b 1 1

1
§:?+22*3 k+1)'7+ (2)

1
+k =Rt

ot k=)

. W + (
If we subtract (2) from (1) term by term, subtracting the terms proportional to the
same factor 1/ 2k we will get

b 1 1 1 1
The sum in the right-hand side is a geometric progression, so, in principle, we can
use the known formula for its sum. But for simplicity, instead of using this general
formula, let us use the same trick that we have just used. First, we divide both sides
of the equality (3) by 2, resulting in the following:
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b 11 1
e e H 4
FE TR U )

If we subtract (4) from (3), we conclude that

b b b 1
27171772 Q
Thus, indeed
1
b=4.-=2.
5 (6)

In addition to the above two operations, we can also have constants like O that
are also easy to generate.

Next in complexity are addition and subtraction. They require as many bit op-
erations as there are bits — i.e., 64 on most computers. Multiplication and division
require even more bit operations.

So, what are the fastest-to-compute nonlinear functions? The fastest functions
are the ones that only use the fastest computer operations:

e unary minus that computes —x and
* minimum and/or maximum.

The function x — —x is linear. So, the only way to get a nonlinear functions is to
apply minimum or maximum to x and —x. This leads either to |x| = max(x, —x) or
to —|x| = min(x, —x).

Comment. It would be even faster to take max(0,x) or min(0,x) — this would re-
quire only one fastest computer operations — but this would not lead to a continuous
random variable :-(

This explains the efficiency of skew normal distributions. Interestingly, if we
apply each of these two functions: |x| and —|x|, to the basic normal distribution, we
get two particular cases of skew normal distributions.

And if we use the second way of simulating random distributions and consider all
possible linear combinations of |x| (for a normal random variable x) and independent
normal random variables, then we get exactly all skew-normal distributions.

This explains the empirical success of this family of distributions.

3 How is this related to ReLU?

What we do in this section. In this section, following [6], we will show that similar
ideas explain the empirical success of Rectified Linear (ReLU) activation functions
in machine learning (see, e.g., [2]). Later in this section, we will explain what is an
activation function in general and what is ReLU activation function.

What are neural networks: a brief reminder. In a neural network, we have several
units (called neurons) that perform some transformations: they take several values
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V1i,...,V, and return the value
v=s(wp-vi+...+wy v, —wp),

where:

¢ the values w; are numerical constants, and
» the function s(x) is a function known as activation function.

Some neurons process inputs to the algorithm, others process results of the previous
neurons, etc. The output of one of the neurons is then returned as the computation
result.

Need for non-linear neurons. Some neurons have a linear activation function. For
such neurons, the dependence of v on v; is linear.

However, If all neurons were linear, then we would only get linear functions,
and many real-life dependencies are nonlinear. Thus, to be able to describe real-life
dependencies, we need to add neurons with nonlinear activation functions.

Which nonlinear activation functions should we choose?

Which nonlinear activation functions should we choose? In many practical sit-
uations, we cannot compute the desired quantity since computations take too long.
From this viewpoint, it is desirable to perform computations as fast as possible.

In relation to neurons, this means that we need to select the fastest-to-compute
activations functions.

This explains ReLU activation function. Similar to the above analysis of re-
scaling functions g(x), we can conclude that the fastest-to-compute are the acti-
vation functions that consist of the fastest computer operations — i.e., changing the
sign, minimum, and maximum. Simuilar to the above case, we conclude that we
should get one of the following functions:

|x| = max(x,—x), —|x| =min(x,—x), max(0,x), min(0,x),
—max(0,x), —min(0,x), max(0,—x), min(0,—x),
—max(0,—x), and —min(0, —x).

In this case — in contrast to the case analyzed in the previous sections — all these
options are possible. Of these options, the fastest are the ones that use only one
fastest computer operations, i.e.,

max(0,x) and min(0,x).

From the viewpoint of the future linear transformations in a neural network, the
activation function min(0,x) is equivalent to max (0, x); indeed:

 we have since min(0,x) = —max(0, —x) and,
* similarly, max(0,x) = — min(0, —x).
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Since, from the neural network viewpoint, these two functions are equivalent, we
can therefore conclude that the fastest-to-compute activation function is

s(x) = max(0,x).

This is exactly the rectified linear (ReLLU) activation functions that is so effective in
machine learning.
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