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Abstract In many practical situations, it is necessary to fairly divide the joint gain
between the contributors. In the 1950s, the Nobelist Lloyd Shapley showed that
under some reasonable conditions, there is only one way to make this division. The
resulting Shapley value is now actively used in situations that go beyond economics
and finance — and in which Shapley’s conditions are not always satisfied: in machine
learning, in systems engineering, etc. In this paper, we explain why Shapley value
can be applied to such situations, and how can we generalize Shapley value to make
it even more adequate for these new applications.

1 Formulation of the problem

Practical problem with which all this started. This story starts with an important
practical problem: we have a group of n people working together on a project. This
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project is a success. What is the fair way to divide the resulting gain between the
participants?

‘What information can we use to make a fair division? To decide who contributed
more to the success, a reasonable idea is to take into account, for all possible sub-

sets S of the set N & {1,2,...,n} of all the participants, the amount v(S) that they

could gain if they worked on their own, without others. Based on this function v

— that transforms a subset S into a real number v(S) — we need to decide how to

distribute the amount v(N) that they earned together between the participants, i.e.,

which amount x;(v) to allocate to each participant so that x; (v) +...+x,(v) = v(N).
For example, if Participant i did not contribute to the gain, i.e., if we have

v(SU{i}) = v(S)
for all S, then clearly this participant should not get anything: we should have

xi(v) =0.

What do we mean by fair? The solution to this practical problem was proposed, in
the early 1950s, by the future Nobelist Lloyd Shapley; see, e.g., [5, 6, 7, 8, 9, 10].
He showed that under some reasonable conditions — including the above condition
that a non-contributor should not get anything — there is only one way to solve this
problem. This way is now called the Shapley value. Here is how Shapley formalized
fairness.

First, fairness means that the result should not depend on how we order the par-
ticipants. In precise terms, if we perform any permutation 7 : N — N, then for the

resulting function v/ (S) def v(7(S)), the gains x;(v') should be the same for the same
participants, i.e., we should have x;r(i) (V) =xi(v).

Second, it means that the distribution should only depend on this particular sit-
uation and not on anything else. In other words, if the same group participates in
two projects, with gains u(S) and v(S), then, whether we view them as two project,
or a single project with gains w(u) = u(S) + v(S), each participant’s overall gain
should be the same: x;(u+ v) = x;(u) 4+ x;(v). This condition is called additivity. In
particular, when we combine identical situations, we get x;(m - v) = m - x;(v) for all
m.

Final formula for Shapley value. Shapley has shown that these two conditions
— plus the condition that a non-contributor should not gain anything — uniquely
determine the distribution of gain. The resulting formula is
[S[t- (n—IS])! ,
x(v) = ¥ 2B (S Ufi}) - v(S), (1)

S: igS

where |S| denotes the number of elements in a set S, and n! is the factorial:
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Shapley value is now effectively used in other applications, but why? In the last
decade, Shapley value has been effectively used in many other applications, e.g., in
machine learning, where it is used to describe which features are most important in a
classification problem. Why Shapley value successfully works in such applications
is a big mystery, because, e.g., in machine learning, one of the possible applications
is to the case when v(S) is the frequency of cases in which, if we only use features
from the set S, we still get a correct classification.

In this application, adding probabilities does not make any sense, so we do not
have additivity condition — one of the important conditions that lead to Shapley
value. However, Shapley value seems to work well in this application.

What we do in this paper. In this paper, we explain:

* why the original Shapley value works well in these applications, and
¢ how to modify Shapley value so that it will work even better in these new appli-
cations.

2 Analysis of the problem — and the resulting explanation of why
Shapley value can be applied to machine learning etc.

What are the new problems to which Shapley value is now applied: analysis.
Let us recall different applications to which Shapley value is now applied.

Case of machine learning. Let us start with the application to machine learning.
In this application, we have n features based on which we have a reasonably good
classification — e.g., classification of images into images or cats and dogs, or, to
give a more serious example, a classification of X-ray breast images into cancerous
and benign. In many such cases, the full use of all these features requires a lot of
processing, more than is possible to implement in each medical facility. So, a natural
idea is to try to use fewer features.

To decide which features to use, ideally, we need to know, for each set S of fea-
tures, what will be the probability p(S) that using only these features will still lead
to a correct classification. For n features, there are 2" possible sets S C {1,...,n}.
When n is large, the number 2" is astronomical — e.g., for n = 300, the number of
possible subsets is larger than the number of particles in the Universe. We therefore
cannot test every set S. Instead, a reasonable idea is to have some few-parametric
approximation of the actual function p(S). Specifically, what people do in machine
learning applications is use the following linear approximation:

p(S) = v=(8) Eeo+ ¥ ci )

ir ieS
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for some coefficients ¢; — and the coefficients c; are calculated by using the Shapley
value formula.

Other applications — possible and actual. There are many other problems in which
it is desirable to find a few-parameter approximation to a function of sets:

* When we have n companies that are potentially interested in merging, it is de-
sirable to predict the gain v(S) (or loss) if companies from a set S C {1,...,n}
merge together; see, e.g., [4, 12, 13, 14].

*  When we have n researchers, it is desirable to predict, for each subset S, what will
be the productivity gain when researchers from a set S start actively collaborating.
Sometimes, collaboration works, sometimes, it does not, it would be nice to be
able to predict when it will work; see, e.g., [4, 12, 13, 14].

* When we have a system consisting of n components, and these components are
not 100% reliable, it is desirable to predict the system’s productivity v(S) in
situations when only components from the set S remain working; see, e.g., [16].

How is the success of Shapley value is explained now. A possible explanation for
the success of Shapley value in situations like machine learning (when additivity
does not seem to be applicable), was provided in [2] (see also [1]). Specifically,
if we use the usual least squares approach (see, e.g., [11]) to find the coefficients
that best fit the approximate formula (2), then we get linear expressions for the
coefficients Av; in terms of the values v(S). In particular, one of the options is the
Shapley value, but more general expressions are also possible — depending on what
standard deviations we use for different values of |S|.

Need to go beyond linear approximations. In many practical cases, a linear ap-
proximation (2) makes perfect sense. However, when we are interested in studying
potential mergers or researcher collaboration, the whole purpose is to make sure that
the joint effect is larger than the sum of the original contributions. To capture this
additional joint effect, we need to go beyond the linear approximation.

How can we go beyond linear approximations? To answer this question, let us
reformulate the right-hand side of the expression (2) in the following equivalent
form:

n

v;::(S):co—i—Zc,--mi(S), (3)

i=1
where m;(S) = 1if i € S and m;(S) = 0 otherwise. In this form, this is clear that the
resulting approximation is a linear function of the variables m;(S).

What can we do if we have an approximate linear dependence, and we want to
come up with a more accurate approximation? Such a situation is typical in physics;
see, e.g., [3, 15]. A usual physics approach is to take into account that most real-
world dependencies f(x,...,x,) are smooth, they can be expanded in Taylor series

n n n
flx1,.o %) = co+ Z Ciy - Xip + Z Z Ciyip *Xiy " Xiy -+ (4)

i=1 i1=1ip=1
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In general, the linear terms are the largest, quadratic terms are second largest, etc.
So, if we are not satisfied with an accuracy of the linear approximation, a natural
idea is to also take into account quadratic terms. If this will not lead to a sufficiently
accurate approximation, we can take cubic terms into account, etc. In general, we
thus get the following approximate formula

n n n
Sa(xt, .o x0) =co+ Z i X, + Z Z Cijiy *Xi, " Xiy + ...+

i=1 i1=1ip=1

Z ...Zc,-lm,-k-x,-ln..-xik. (5)
=1 =l
It is reasonable to apply the same approach to our case as well — and this was
indeed proposed, e.g., in [4, 12, 13, 14, 16]. The only difference from the general
formulas (4)—(5) is that in our case, each value m;(S) is equal either to 0 or to 1,
(m;(S))* =1 for all k> 1 and thus, it does not make sense to separately consider
terms like (m;(S))?, etc. So, we arrive at the following formula:

VQ(S) = C()-i-ZC,'l -, (S) + Z Ciyiy - Miy (S) ~m,~2(S) +...+
i

i1<ip

Z Ciy...ip ~ My (S) -...-m,'k(S). (6)

i1 <ip<...<iy

Actually, in many cases, there is additivity. In cases of gain — like companies
merger or researcher collaboration — we do have the same additivity idea as in the
original applications of Shapley value.

In the machine learning case, it does not make sense to add probabilities, but
we can add gain coming from the increased probability of success. This gain is
proportional to probability of success, so additivity of gain naturally translates into
additivity of probabilities. This, by the way, explains why the Shapley value is so
effective in machine learning.

Similarly, in the systems engineering case, we can measure the results of only-
some-components-functioning in terms of productivity; in this case, we also have
a natural idea of adding productivity of both cases — so we can also formulate a
natural additivity condition.

The desired approximation should be exact in some cases. For the usual Shap-
ley value, the linear approximation is exact for the case when S is the empty set: if
no one does anything, there is clearly no gain. For the proposed Taylor-series-type
generalization, we have more parameters, so we can add more sets for which this
approximation is exact. We can start with this exactness requirement for sets S con-
sisting of a single element, then formulate a similar requirement for sets consisting
of two elements, etc.

In the next section, we will show that with this additional requirement, there is a
unique Taylor-type expression that is additive and symmetric.
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3 Our main result

Definition. Let n > 2 and k > 1 be integers.

. . . def
¢ By a set function we mean a function that assigns, to each set S C N = {1,...,n},

a number v(S) so that v(0) = 0.
* By a k-approximation, we mean an expression of the type

va(S,v) =co(v) + Y iy (v) - miy (S)+ ¥, €iniy (v) iy (S) - miy (S) +...+

i1<ip

Z c,-l,_,ik(v) -mil(S)~...-m,~k(S), (7)
it <in<..<iy
for some continuous functions c;,._.(S).

*  We say that the k-approximation is dummy-fair if whenever for some set A, we
have v(SUA) = v(S) for all S, we should get v~ (SUA,v) = v=(S,v) for all S. In
particular, for S = 0, we should get v.(A,v) = v (0,v).

o We say that the k-approximation is symmetric if for every permutation © : N — N,
we have v (1(S), 1(v)) = T(va(S,v)), where (2(»))(S) & v(x(S)).

o We say that the k-approximation is additive for every two set functions u and v,
we have v~ (S,u+v) = va(S,u) +va(x,v).

o We say that the k-approximation is exact for small sets if va.(S,v) = v(S) for all
sets S for which |S| < k.

Proposition. For each n and k, there exists exactly one k-approximation which is
dummy-fair, symmetric, additive, and exact for small sets:

S = Y <W|;|T> I m,(S)) +

T: |T|<k i: i€T

w wv(U). .
T:;”‘( ! U:Uc%u:k< U] i:Ii»—E[U ’(S)>>’ ®

wo(T)E Y (=1)T=BLy(r). 9)

S: SCT

where

Comment. For k = 1, we get a linear expression for which the coefficients ¢; are
exactly the Shapley values.

Example beyond Shapley value. If n» = 3, and we get some result only when at
least 2 people work together, i.e., if v(S) = 0 for all 1-element sets and v(S) = 1 for
all 2-element sets and for the whole set N, then:

» For k=1, we get a linear approximation based on the Shapley values:
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VN(S) = l'l’l’n(S)-f— l -MQ(S)‘l-l

3 3 -m3(S). (10)

This approximation is exact only for the empty set S = 0.
* For k = 2, we get the following quadratic approximation:

va(S) = % -my (S) ~m2(S)+%~m1(S) -m3(S)+%~m2(S) -m3(S). (11)

This approximation is exact for all 1-element sets S.
* For k = 3, we get the following cubic approximation:

va(S) = m(S) - ma(S) -m3(S). (12)

This approximation is exact for all 2-elements sets S — and, it so happens that it
is also exact for the whole 3-element set N = {1,2,3}.

Proof.

1°. First, one can see that additivity implies that each coefficient function c;, .. ;, (v)
is additive, i.e., that for each such coefficient function, we have

Ciyig(U+v) = ciy i, () +ciy iy (v). (13)
In particular, if we add m identical set functions, we get
Cipip(m-v)y=m-ci_i,(v). (14)

In particular, for any integer g, for the set function v/q, we get

%
Cl‘]...i[ (V) = Q'Cil...ig <q) (15)
hence
1 1
i gV )=y “Cipip (V). (16)

By applying the formula (14), we conclude that for every positive rational number

m/q, we have
m 1
Cil...i( E -V = m'cil.‘.ik ; V.

So, due to (16), we get:

m m
Ci]...ig (q 'V) = g 'Cil..-i[(v)' (17)

Since the function cil_,_i/(v) is continuous, and every non-negative real number
a can be represented as a limit of positive rational numbers, we conclude that, in
the limit when m/q — a, the same equality (17) holds for every non-negative real
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number a:
ciy.igla-v)=a-ci i v). (18)

Together with additivity, this means that for all possible linear combination of set
functions with non-negative coefficients, we have

c,-l,_,,»é(al V1. ..+a,~vt) =ai 'Cil._.i[(vl) +... +a,~c,~l._.i£(v,). (19)

By combining these equalities for all the coefficient functions ¢;,...(v), we conclude
that
va(S,ar-vi+...4ar-v) = a1 - va(S,vi) + ... 4 ar - va (S, v). (20)

2°. Let us show that the equality (20) holds also when some coefficients a; are
negative — but the expression

vdéfal-vl—i—...—i—a,-vt (21)

is still positive and thus, makes sense. Indeed, in this case, if, in the equality (21),
we move all the terms for which a; is negative to the left-hand side, we get the

following equality:
v+ Z laj|-v;= Z aj-vj. (22)
Jia;<0 J:a;j>0

On both sides, the coefficients are non-negative, so we can apply the formula (20)
to both sides and get the following equality:

va(Sv)+ Y lajlva(Svi) = Y ajva(S,v)) (23)

Jia;j<0 Jia;>0

Now, we can move the terms corresponding to a; < 0 back into the right-hand side
and get

vz(S,v):Zaj-vz(S,vj), (24)
J

i.e., indeed, the formula (20) holds for all possible coefficients a;.

3°. To complete the proof, we will use th fact — that is used in the original Shapley’s
proof — that for every set function v(S), we have:

v(S) :ZWV(T)-VT(S)7 (25)

T

where the sum is over all sets 7', and vy (S) denotes the following set function:

e we have vy (S) =1 when T C S and
* we have vy (S) = 0 otherwise.

In other words, the set function vz (S) means the following:
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 if all the participants from the set T get together, then they gain 1 unit — irrespec-
tive of what others do;

» otherwise, if not all participants from the set T get together, no one gains any-
thing.

Because we proved that formula (20) holds for all linear combinations, with coeffi-
cients of any sign, we can conclude that

vm(S,v):;wV(T)-vz(S,vT). (26)

So, to find the desired value v~ (S,v), it is sufficient to describe the values v~ (S, vr)
corresponding to all possible sets T'.

4°. For each function v7, participants outside the set 7' do not affect the value of the
set function, and thus — due to dummy-fairness, adding these participants should not
change the approximate value vx.:

va(S,v) =va(SNT,v). (27)

Thus, it is sufficient to consider the values v~ (S,v) for subsets S of the set T

By definition of the set function vy, we have vy (S) = 0 for all S for which [S] <
|T|. When |T| < k, then, due to the exactness requirement, this means that we should
also have v~ (S,v) = 0 for all S. So, we cannot have any products of fewer than
|T| values m;(S). So, the only possible term is the product of all |T| values m;(S)
corresponding toi € T.

When |T| > k, we should also have v~ (S,v) = 0 for all sets S with |S| < k. Thus,
we also cannot have any products with fewer than k values. So the only remaining
option is to have products of k values. The set function vr(S) does not change if
we perform any permutation of the elements of the set 7. Thus, due to symmetry,
once we have one such product, we should have, with the same coefficient, all such
products corresponding to all possible subsets U of size k. From the fact that the
sum of all these terms should be equal to 1, we deduce the coefficient at each such
product — it is 1 divided by the number of such subsets U.

Substituting the resulting expressions for v~ (S, vr) into the formula (26), we get
the desired expression (8). The proposition is proven.
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