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Abstract— While current machine-learning-based AI tech-
niques have been spectacularly successful, their present applica-
tions still leaves many important open questions – for example,
how to make their results more reliable or, at least, how to gauge
how reliable is each AI recommendation. In this paper, we argue
that to fully answer these questions, we need to go beyond the
current AI techniques, and that in this development, systems-,
human-, and cybernetics-based ideas not only naturally appear,
they seem to provide a way to the desired answers.

I. WE ARE IN THE AGE OF AI, BUT . . .
We are in the age of AI. Spectacular successes of machine
learning techniques have made everyone in awe of AI:

• Starting with ChatGPT, Large Language Models
(LLMs) help us in many creative tasks like writing
poems and coming up with class syllabi.

• Computers are world champions in Go – probably the
most difficult human-invented game.

• Self-driving cars are a common sight in many cities.
• AI-based system solve practically important partial dif-

ferential equations faster than all known algorithms, etc.
To many people, AI is all we need – and if the current

AI is not yet perfect, all we need is to train it some more.
Computer Science department and programs all over the
world are renamed into AI departments and programs, most
faculty openings in Computer Science are now AI-related, all
other research directions are almost frozen – to the extent
that several member of the Program Committee of one of
the major fuzzy conferences seriously proposed to give the
conference Best Paper Award to a machine learning paper
that has practically nothing to do with fuzzy.

But. The recent success of AI was very fast and very
unexpected – in terms of successes, it is a clear example of
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a steep exponential growth. It is natural to expect that this
spectacular exponential growth will continue for some time.
Of course, it is not possible that this exponential growth will
last forever: there are many real-life examples where this
growth stopped:

• an economic boom leads to overheated economy and
even to a crisis,

• exponential population growth that worried people in
the 1960s has drastically slowed down, etc.

But with AI, many people expect the boom to continue for
some time.

However, our opinion is that the boom is about – if not
to end, but at least to slow down. Indeed, while LLMs are
well known to be not perfect, the hope was that, just like
training on more examples made machine learning results
better, feeding even more examples to LLMs will make them
less imperfect.

What we see now is that the current LLMs have already
devoured practically everything that is there – to the extent
that several authors of copyrighted texts are suing the LLM-
producing companies for a supposedly illegal use of their
works.

In spite of all the training – that took practically all
possible available examples:

• self-driving cars are still, in many situations, several
times less safe than an average human driver; see, e.g.,
[1], and

• even the Go championship is now in doubt – while the
AI indeed did easily beat Go professionals, it has been
shown to be defenseless against a skilled amateur; see,
e.g., [17].

Maybe we can get better results if instead of the current,
mostly empirically determined aspects of neural network
such as activation function etc., we find a better one?
Unfortunately, there is little hope that this will leads to
significantly better results: most such empirically determined
aspects turned to be provably optimal in some reasonable
sense [10] and references therein.

In short, what we observe is a drastic slowdown of AI
progress.

Comment.
• We are not saying that AI progress has stopped: there

are still many potential useful applications of modern
AI, of current LLMs, applications that need to be
developed and exploited.

• What we are saying is the techniques themselves are not
growing as fast as we expected – to continue growing,



they need a boost.

What we do in this paper. In this paper, we analyze where
the desired boost can come from. Our conclusion is that it
will come if we better take into account systems, human,
and cybernetic aspects of the problems – i.e., the aspects
that are largely within the scope of our IEEE Systems, Man,
and Cybernetics society.

We titled this paper “Memories of the Future” because:
• while we always appreciate new ideas,
• we believe that (and we argue that) many problems can

be solved if we go back to the previous AI (and other)
ideas, ideas that currently mostly frozen, and work to
combine them with the current machine-learning-based
AI techniques.

Most of our related ideas are raw, but some of them
have started to becomes somewhat more technical. This
paper is largely a position paper, so in this paper, we do
not provide the corresponding technical details; instead, we
provide references to more technical papers where these
details are described.

II. SO WHAT ARE SYSTEMS, HUMAN, AND
CYBERNETIC ASPECTS?

Let us start by describing what we mean by systems, hu-
man, and cybernetic aspects. Systems means that we consider
processes as a whole, including software, hardware, humans,
and other objects involved in the corresponding process. For
example, a systems approach to manufacturing means to
consider all aspects from providing raw materials to human
satisfaction of the final products to the effects on environment
and health.

Human means taking into account that the ultimate goal
of all the human activity is to benefit the humankind. So we
need to take into account not only objective characteristics,
it is also important to take into account what humans want,
and how they perceive what we offer them.

A classical example of the difference between objective
characteristics and human perception is economy. Objec-
tively, we should aim at the largest and more fairly distributed
Gross Domestic Product (GDP). However, the ultimate goal
is human happiness, and it is also well-known that while, in
general, GDP is correlated with happiness, there are many
exceptions. For example:

• in Mexico, people are, on average, happier that what a
correlation model predicts, while

• in several countries of Northern Europe, they are less
happy than they should be based on their GDP.

Finally, by definition (see, e.g., the original book [18]),
cybernetics is a study of processes that are common to
human, living beings, and machines. Studying such processes
has led to many useful developments, and this usefulness
makes sense. For example, if we want to make a machine
that flies, it is useful to look at creatures that fly – birds and
insects – do it. As a result, we have modern airplanes with
wings. Of course, these wings are different from the birds’

ones – for example, they do not flap, but still the main idea
is largely the same.

Similarly, if we want to make a machine that thinks and
makes decisions, a natural idea to look at how we humans
think and make decisions.

• This can be on the level of statements and logics, as in
the historical logical approach to AI.

• This can also be on the level of neurons – and this
is, by the way, where the modern neural network-based
spectacular AI models come from.

III. WHAT DO WE WANT?
What do we want? For all our problems – be it transporta-
tion, medicine, manufacturing – we want a solution:

• that would be satisfactory to us,
• that would provide accurate and reliable results while

maintaining privacy and security,
and we want these solutions to be generated as fast as needed
(which, in many cases, means as fast as possible).

And ideally, the corresponding computations should not
spend as much energy as they do now, when computers take
more than 5% of the world’s energy consumption – and this
proportion is growing. After all, our brains perform their
computations and their reasoning at the energy level several
orders of magnitude lower than the computers.

What we do in the following sections of this paper. We
will go over all these requirements one by one. For each of
them, we will explain:

• why we think that the current machine learning tech-
niques are not sufficient, and

• how systems-, human-, and cybernetics-based ideas can
help.

IV. HOW DO WE MAKE SURE THAT THE
SOLUTION IS SATISFACTORY?

What do we want? First, we want to find out what we
humans want, be it transportation, be it eating out, etc.

This is not easy to formulate in precise computer-
understandable terms. For example, for transportation, in the
first approximation, it makes sense to assume that we want
to get from point A to point B as fast as possible. But
this is true only in the first approximation: we also need to
take comfort into consideration. It is largely because of the
comfort that in many big cities, many people prefer to drive
their own cars, while public transportation is often much
faster.

How can we learn what people want? How can we
take into account this human aspect of the corresponding
problem?

Why cannot we just use current machine-learning-based
AI techniques? At first glance, why not use machine learn-
ing (ML)? In many other learning tasks, they have been very
successful.

But these ML techniques are only very successful when
they are fed thousands and millions of examples. The need
for so many examples can be naturally explained by simple



statistics. Indeed, based on N noisy samples, we can find
the value of the corresponding parameters with accuracy
proportional to 1/

√
N ; see, e.g., [15]. So, to get accuracy

of 0.1%, we need to have N = 106 – i.e., we need a million
of examples. This, by the way, is the reason why learned
self-driving cars are not yet perfect: even with billions of
examples N ≈ 109, they have accuracy of 1/

√
N ≈ 3·10−5,

which is still, in many situations, much worse than the
performance of a human driver [1].

Back to human aspects: it is easy to come up with millions
and billions examples of values of the corresponding physical
process – sensors are very affordable now, we can make
many measurements – but it is difficult to come up with
millions of survey results describing how people feel.

What can we do with this human-related aspect? Good
news is that in coming up with ideas, we do not need to start
from scratch. People have been thinking of how to describe
human reasoning for quite some time (see, e.g., [13]) – this
was one of the main direction in traditional AI, with neural
networks being a poor cousin. It may be time to revive that
research and combine machine learning with more traditional
reasoning-based AI techniques.

Also, people have been thinking of how to formalize im-
precise (“fuzzy”) human sentiments for quite some time. One
of the successful techniques – that led to many successful
applications in the 1980s and continues to be useful – is
fuzzy techniques; see, e.g., [5], [6], [11], [12], [14], [21].
So a reasonable idea is to also combine machine learning
techniques with fuzzy (see, e.g. [8]). Such attempts are
already going on, as judging by many presentations on fuzzy
conferences and publications in fuzzy journals. We just need
to take this activity more seriously:

• not, as some people in ML community perceive it –
as attempts of somewhat obscure fuzzy community to
compete,

• but as an attempt to further boost AI techniques.

Comments.
• Why should we combine ML with anything else? Many

researchers like the saying “if all you have a hammer,
everything starts looking like a nail”. Hammer is just
one of the tools, a very important one, no doubt: every
household has a hammer, even those that do now own
any other tools. Similarly, ML is just one of the tools,
maybe one of the most important ones – but we often
also need other tools to succeed.

• There is an additional advantage of combining machine
learning with more traditional AI techniques and fuzzy
techniques:

– in contrast to usual machine learning – which, to a
human user, is just a black box,

– traditional-AI and fuzzy techniques use language.
Human users can understand how these techniques
come to their conclusions – and this understanding
makes these technique more reliable to human users.

• For those who are not very familiar with modern fuzzy
techniques, it is necessary to emphasize that they have

gone way beyond the original Zadeh’s simple ideas of
using values from the interval [0, 1] and min and max
instead of “and” and “’or”. Modern fuzzy techniques
are much more complex now. And while they do not
have as many spectacular applications as in the peak
of their usage, in the 1980s and 1990s, they are still
successfully used:

– e.g., in many cars’ automatic transmissions – where
one of the main objectives is an imprecise objective
to make the ride comfortable for the driver and for
the passengers – and

– in many other similar human-related applications
– like a rice cooker – where the quality is largely
subjective.

V. HOW DO WE MAKE THE SOLUTIONS MORE
ACCURATE AND RELIABLE – AND AT LEAST

HOW TO GAUGE THEIR ACCURACY AND
RELIABILITY?

What is a problem? Many machine learning results are way
off; they are usually called hallucinations. For example, a
very effective image understanding algorithm may suddenly
interpret a cat picture (a clearly cat picture) as a dog or even
as a train.

Of course, there are cases when an algorithm makes a
mistake: no one is perfect, and most algorithms are not
perfect either. What many algorithms – and many humans
– do in such situation is provide not only the answer itself,
but also an estimate for the accuracy and/or reliability of this
answer.

For example, when my doctor says that I have hernia that
needs to be operated upon, all I can do is agree to this
operation. However, if my doctor says that most probably
it is hernia, but an additional ultrasound test may be helpful,
then I would probably first undergo this test.

From this viewpoint, it is desirable to supplement machine
learning results with such estimates. In other words, we need
to apply methods of Uncertainty Quantification (UQ) to such
situations.

And this is where further work is clearly needed: many
machine learning algorithms already produce estimates of
their answer’s reliability and accuracy, but these estimates
are way off. In examples when a system recognizes a cat
as a train, its estimated confidence in this identification is
sometimes 99%.

What can we do about it?

Why cannot we just use current machine-learning-based
AI techniques? Since ML is so good in learning, why
cannot we use it to provide the desired estimates? At first
glance, we can rather easily do it. We can come up with
groups of images with different degree of clarity. For each
of these groups, we can apply the trained ML tool (whose
accuracy we are estimating) to each of these images. Based
on the results, we can compute the percentage of correct
answers. Then, we train another ML tool on the pairs (image,
percentage-of-the corresponding group). After this training,



we expect that for every new image, thus trained tool will
provide a good estimate for the first tool’s reliability – and
we can use similar techniques to gauge the accuracy of neural
network’s computations.

This seems like a natural idea, so does not this idea work?
Why, when we train the neural network on pairs like (image,
cat), (image, train), etc., it learns, but when try to train it on
pairs (image, percentage), it does not? The answer goes back
to the same statistical arguments that we used in the previous
section.

To be well trained, we need many examples. If we have a
sufficiently large number N of examples, the system will be
well trained. However, to get an example of a probability, we
need a group of such examples – and if we want to estimate
this probability with accuracy 10%, we need – by the same
statistical argument – to have at least 100 examples in each
group.

Since each group has 100 examples, we have N/100
groups – which means that the resulting accuracy of esti-
mating the degree of confidence is 10 times smaller than the
accuracy of classification itself.

So what can we do? One of the main reasons why detection
is not perfect is that we do not have a pure picture of a
standard average cat – in this ideal case, we would have a
perfect (or at least an almost perfect) recognition. In reality,
we have a picture of an individual cat that is different from
the average cat, and we have other objects in the picture.
From this viewpoint, both factors – the difference between
an individual cat and an average cat and the background – act
as noise. So, the question become: how to gauge the effect
of this notise on the system’s decision?

Out of three aspects that we mentioned in Section II, here
the most appropriate is the systems aspects. Indeed, after all,
the trained neural network can be viewed as a system, and
for systems, noise is a usual feature, we know how to gauge
the effect of noise. It is therefore desirable to use the general
system techniques to gauge the effect of this specific noise on
the result. Traditional methods of this estimation – methods
of sensitivity analysis – require that we estimate the effect
of each noise components – i.e., in effect, that we estimate
the partial derivation of the computation result with respect
to each input.

In general, this requires calling the algorithm as many
times as there are inputs – which, for ML models with
many inputs, would be prohibitively long. Good news is that
since training of a neural network is based on computing
partial derivatives, we can use this built-in feature to compute
the derivatives practically for free, at the expense of just
one back-propagation step; see, e.g., [7]. Hopefully, other
systems-related techniques can also be designed.

VI. HOW CAN WE MANAGE SECURITY AND
PRIVACY?

Security and privacy are very important. However, every
security and privacy professional will tell you that there is no
such thing as perfect security and perfect privacy. What we

really need is to make sure that the probabilities of security
and privacy violations should be small. For this purpose, we
need to be able to estimate this probability.

Similarly to the uncertainty quantification case, the tradi-
tional machine learning tools may not be very helpful here,
since to estimate a probability, we need a group – and this
drastically decreases the number of training examples and
thus, drastically decreases the estimation accuracy. So, for
these estimations, we need to supplement machine learning
with more traditional security and privacy techniques.

For example, one way to preserve privacy – that is often
used in surveys – is to replace exact numbers with ranges.
For example, a survey mask whether the age is between 20 or
30, or between 30 and 40 years old, etc. – instead of asking
for the exact age. Of course, if we only have, as inputs,
ranges (and not the exact values), the computation results
lose some accuracy. In this case, an important question is
how to select ranges for different inputs so that, within
the constraint of preserving privacy, the result will be as
accurate as possible. It is known that once we know all
the partial derivatives, we can then reasonably easily solve
this problem; see, e.g., [20]. So, we can use the above-
mentioned uncertainty quantification solution for machine
learning-based data processing.

VII. HOW CAN WE MAKE COMPUTATIONS
FASTER AND LESS ENERGY-CONSUMING?

What can we do? Training a neural network takes some
time. For example, for the first version of ChatGPT, training
took over a year. And we are talking computations on very
fast high-performance computers. How can we make training
faster? And how can we make it less energy-consuming?

Three factors cause the training of machine learning
models to be rather long (and rather energy-consuming):

• first, we have a large amount of examples to process;
each example includes many features, and inputting
and processing all the features from all the examples
requires significant time and energy;

• second, the training algorithms that we use require many
computational steps, which, in their turn, require a lot
of time and a lot of energy; and

• finally, the hardware on which the algorithms run takes
time and energy to perform each operation.

So, to speed up computations, it is desirable to see if we can
decrease the effect of these three causes.

How can we decrease the number of features. A natural
idea is to only use the features that effect the result the
most. Detecting such features is a known problem in system
analysis, and there are many statistical techniques to detect
the most important features. One of these techniques –
actively use in machine learning – is the use of the Shapley
value, a concept that was originally designed to find the
collaborators who were most important for the success of
a project. However, the use of the Shapley value does not
always find the truly most important features. There are two
ways in which we can improve the situation:



• First, the original Shapley value implicitly assumes
that we know the exact effect of each combination
of factors. In practice, especially when the effect is
measured in probabilities – as in machine learning –
these probabilities can only be determined approxi-
mately. It is therefore desirable to use modifications of
the Shapley value that take this uncertainty into account;
see, e.g., [2].

• Second, the use of Shapley values means, in effect, that
we consider a linear approximation to the effectiveness,
when the predicted value of using only m out of all
n features is approximated by the sum of the values
corresponding to each feature. Of course, most real-life
systems are more complex than the linear ones. So, a
natural idea is to use non-linear generalizations of the
Shapley value concept; see, e.g., [3], [16], [19].

How can we decrease the number of needed examples?
We humans do not need thousands and millions of examples
to learn a new concert. For us, dozen (or so) examples is
usually enough – and a few hundreds is definitely enough.
How do we do it? It is often said that the best teacher is not
the one who best teaches the class material, the best teacher
is the one who teaches students how to learn. This is why we
humans are so good (in comparison with the current neural
networks) in learning new concepts and new ideas: because
we have learned how to learn.

So, instead of training a neural network for each specific
case, let us teach the neural network how to learn. Specifi-
cally, lrt us give, to a neural network, many examples, from
different domains, of pairs in which:

• the input consists of several examples of the desired
problem-solution pairs, plus a new problem of similar
type, and

• the output is the solution to the last of the problems.
And:

• just like when we feed a neural network pairs (image,
animal name), it learns to recognize an animal from an
image,

• with this new training, we will feed it examples of a
new concept, it will learn how to use this concept –
just like we learn how to use it; see, e.g., [4].

For example:
• we give it many examples of addition triples, like 2 +

2 = 4, 3+5 = 8, etc., and a new similar example, e.g.,
3 + 6, and

• the trained neural network will (hopefully) return 9.
This idea comes from emulating how we humans do it – so
it related to the cybernetic aspects.

Comment. This may also be related to the fact that many
of us boost their productivity when attending face-to-face
conferences: during several days, we hear a lot of pairs
(problem, solution) – and this boosts our own ability to find
solutions to complex problems. This is just like in elementary
school: the process of going through many examples of
addition that the teacher showed on the board helped us

to better perform addition (or multiplication, or whatever
concept it was).

What can we do on the hardware level? In modern
computers, the only think that is moving is electrons. They
move for two reasons:

• when we need to communicate a bit (or a sequence of
bit) from one location to another, and

• when we need to change the state of the basic cell from
0 to 1 (or from 1 to 0).

The time needed for each such movement is equal to the
distance divided by speed. Electrons already move with a
speed close to the speed of light, so the only way to decrease
time is to decrease the distance. Similarly, the energy needed
for each movement is proportional to the distance. So, the
only way to decrease the distance is also to decrease the
distance.

Already now, within a cell, the distance that electrons need
to travel when the state changes from 0 to 1 is the size
of a few thousand molecules. If we decrease this distance
even more, we will eventually get the size of a few atoms.
Moving electrons between atoms is what is happening during
chemical reactions – so we arrive at the idea of chemical
computing. Chemical processes is the main way processes
are happening in our brain, hence this falls under cybernetic
aspects. So, it is desirable to pursue chemical computing.

In this pursuit, it is desirable to take into account that
the larger the concentrations, the faster the reaction – and
even the simulation of high-concentration chemical reactions
can indeed speed up computations, in particular, neural
computations; see, e.g., [9].

If we go even further in decreasing size, we get to
the micro-objects, for describing whose behavior Newtonian
physics is not longer a good approximation – we need to use
quantum physics. Computing on this level will thus be, in
effect, quantum computing.

VIII. LET US SUMMARIZE

Let us summarize the above analysis of how systems-,
human-, and cybernetics-related ideas and techniques can
help modern AI to become even more effective (and less
flawed):

• We need to combine traditional AI techniques and fuzzy
techniques with machine learning; this is related to
human aspects.

• We need to further develop uncertainty quantification,
security, and privacy techniques to machine learning
models; this is related to systems aspects.

• To more adequately find the most important input
features, we need to further explore the use of non-
linear and/or uncertainty-affected generalizations of the
Shapley value; this is also related to systems aspects.

• We need to use the ability of a neural network to learn
not only to make it learn a specific material, but also to
learn how to learn by itself; this is related to cybernetic
aspects.



• We need to pursue the possibility of using chemical (and
quantum) computing; this is also related to cybernetic
aspects.

Let us do it. This is a position paper, not a paper describing
results. We cannot guarantee that all these directions would
lead to successes – and, in many of these recommendations,
we do not have a clear idea of what exactly to do – but let
us try! As a Russian poet Mayakovsky said (it sounds better
when rhymed): The future will not come by itself, we need
to do something about it!
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