
Why F-transform is more effective than a
general convolution

Thi Minh Tam Pham1, Irina Perfilieva1, Olga Kosheleva2, and
Vladik Kreinovich3

1 Institute for Research and Applications of Fuzzy Modeling
University of Ostrava, 30. dubna 22, 701 00 Ostrava 1,

Czech Republic, Thi.Pham@osu.cz, irina.perfilieva@osu.cz
2 Department of Teacher Education, University of Texas at El Paso,
500 W. University, El Paso, Texas 79968, USA, olgak@utep.edu,

https://www.cs.utep.edu/vladik/olgavita.html
3 Department of Computer Science, University of Texas at El Paso,
500 W. University, El Paso, Texas 79968, USA, vladik@utep.edu,

https://www.cs.utep.edu/vladik/

Abstract. In many applications, it is useful to use fuzzy-motivated tech-
niques of F-transform, they often lead to better results that all previously
known methods. However, this empirical success is somewhat puzzling.
Indeed, from the purely mathematical viewpoint, F-transform is a par-
ticular case of convolution – so why is it more effective than a general
convolution? In this paper, we explain this puzzle by showing that, in
contrast to general convolution, F-transform requires much fewer com-
putational steps. This is a big advantage in real-time situations when
we need answers as soon as possible. Also, in situations when there is a
finite time budget, this allow us to have more time for additional data
processing – and thus, to get better results.

Keywords: F-transform, convolution, computation time

1 Formulation of the problem

F-transform is an empirically successful technique. Fuzzy logic (see, e.g.,
[1, 4–7, 11]) has many direct applications. It also has many indirect applications
– i.e., applications of fuzzy-motivated techniques. One of such techniques is F-
transform; see, e.g., [3, 8, 9, 12] and references therein.

Let us briefly explain, on a 1-D example, how it works. (At the end of this
paper, we explain how our analysis can be generalized to the multi-dimensional
case.) In the 1-D case, we start with a basic continuous non-negative function
A(t) that is different from 0 on an interval [−h, h], for some h > 0, and reaches
the value 1 for t = 0. We pick some starting point T0. Let us denote, for all

integers k, Tk
def
= T0 + k · h. Then, when we have a continuous signal x(t), we

replace it with the values

Fk
def
=

∫
x(t) ·A(Tk − t) dt∫

A(t) dt
. (1)



2 Thi Minh Tam Pham, Irina Perfilieva, Olga Kosheleva, Vladik Kreinovich

These values form what is called an F-transform of the original signal x(t).
In most current applications – but not in all of them – the function A(t) is

selected in such a way that the sum of all shifted function is equal to 1:∑
k

A(Tk − t) = 1.

This success is somewhat a puzzle. From the purely mathematical view-
point, F-transform is a particular case of a general concept known as convolution.
Namely, the expression (1) can be equivalently described as

Fk =

∫
x(t) · a(Tk − t) dt, (3)

where we denoted

a(t)
def
=

A(t)∫
A(s) ds

. (4)

In general, the expression

F (s)
def
=

∫
x(t) · a(s− t) dt, (5)

is known as the convolution of the functions x(t) and a(t). In these terms, the
values of F-transform are simply values Fk = F (Tk) of the convolution function
F (s) at the points s = Tk.

And this is where the puzzle appears. Convolution is a well-known tech-
nique, with many efficient algorithms and many effective applications. So many
researchers who apply F-transform are puzzled by the fact that in many appli-
cations, F-transform is more effective than the general convolution. (And some
not-very-attentive anonymous reviewers of F-transform papers recommend re-
jection without looking at the successful results – based solely on the fact that
since this method is a particular case of a convolution, there is nothing novel in
this method.)

Comment. Of course, in practice, the signal x(t) comes as a sequence of values

xi
def
= x(ti), where usually ti = T0+ i ·∆t for some small ∆t. In this case, we use

the corresponding integral sum to approximate the integrals (3) and (5):

F (ti) =
∑
j

x(tj) · a(ti − tj) ·∆t; (6)

Fk =
∑
i

x(ti) · a(Tk − ti) ·∆t. (7)

What we do in this paper. In this paper, we provide an answer to this puzzle:
namely, we show that F-transform can be computed much faster than the general
convolution – and this explains it effectiveness:



Why F-transform is more effective than a general convolution 3

– in situations when we need the answer as soon as possible, computation
speed is definitely a big advantage, and

– in situations when there is a limited time budget, this speed allow us to have
more time for additional data processing – and thus, to get better results.

2 Analysis of the problem

How is F-transform different from the general convolution. To explain
why F-transform is often empirically more efficient than the general convolution,
let us first recall how is F-transform different from the general convolution. The
main difference is as follows:

– Computing the convolution usually means computing the values F (t) for all
possible values t – i.e., in practice, for all the values ti.

– On the other hand, F-transform only computes the values at points Fk –
and these are much fewer such points, h/∆t times fewer.

We will show that this difference actually leads to an explanation of F-transform’s
empirical effectiveness.

How is convolution usually computed? To explain why computing F-
transform requires fewer computational steps that convolution, let us recall how
convolution is usually computed.

One possible way to compute convolution is to directly implement the formula
(6). Let us analyze how long it would take, in this case, to compute all the values
of the convolution F (t) – i.e., to compute all the values F (ti).

Let us denote the duration of the input signal by T . On the time interval of

size T , we have N
def
= T/∆t values xi. On this interval, we have n = T/h values

Tk. Each function a(ti) is different from 0 only on an interval of width 2h. On
this interval, there are 2h/∆ different values ti – i.e., taking into account the
formulas for N and n, we conclude that there are 2N/n non-zero values a(ti) of
the function a(t).

To compute each value F (ti) by using the formula (6), we therefore need to
perform 2N/n multiplications – and then, we need to add the resulting 2N/n
terms. Thus, the overall number of arithmetic operations needed to compute
each value F (ti) is equal to 2N/n + 2N/n = 4N/n. Computing convolution
means computing F (ti) for all N points ti. So, the overall computation time
needed to compute the convolution by directly implementing the formula (6) is
equal to N · 4N/n = 4N2/n.

For large N , this number of steps is large. It is known that we can drastically
speed up computations if we use Fast Fourier transform (FFT); see, e.g., [2]. This
computation is based on the fact that the Fourier transform of a convolution is
equal to the product of the Fouier transform of the convolved functions. Thus,
to compute the convolution, we can do the following:

– First, we apply Fourier transform to the signal x(t). This requires

1.5 ·N · log2(N)



4 Thi Minh Tam Pham, Irina Perfilieva, Olga Kosheleva, Vladik Kreinovich

computational steps. We also need to compute the Fourier transform of the
function a(t), but this can be done before we start applying this F-transform
to different signals, so we do not count this time as part of the algorithm’s
run-time.

– Then, we multiply both Fourier transforms element-wise. We have N ele-
ments, so we need N multiplications.

– Finally, we apply Inverse Fourier transform to the resulting product. This
also requires 1.5 ·N · log2(N) computational steps.

So, overall, this algorithm requires

1.5 ·N · log2(N) +N + 1.5 ·N · log2(N) = N · (3 · log2(N) + 1)

computational steps. For large N , this is much smaller that the direct computa-
tion whose time in, as we have shown, quadratic in N .

How fast can we compute F-transform? Let us now see how fast we can
compute F-transform. Each moment ti belongs to some interval [Tk, Tk+1]. Ac-
cording to the formula (7), the corresponding signal value x(ti) is only used in
computing two values of the F-transform – the values Fk and Fk+1. In each
of these computations, we multiply x(ti) by some pre-computed coefficient –
a(Tk − ti) · ∆t or a(Tk+1 − ti) · ∆t – and then add this product to the previ-
ous sum – we need 2 computational steps. Thus, for both computations, we use
2 · 2 = 4 computational steps that use the value x(ti). In general, there are N
values x(ti), so overall, we need 4N computational steps.

Let us compare. For sufficiently large N , linear computation time 4N is defi-
nitely faster than quadratic time, and faster than FFT’s O(N · log2(N)).

We can find the threshold value N0 starting with which F-transform is faster.
This is the value for which the computation times are equal, i.e., for which
4N0 = N0 · (3 · log2(N0) + 1). If we divide both sides by N0 and then subtract
1 from both sides, we get 3 · log2(N0) = 3, so log2(N0) = 1 and N0 = 2. So,
already for N ≥ 3, F-transform is faster.

How faster? For example, for N = 1000, we have 4N = 4000 and

N · (3 · log2(N) + 1) ≈ 1 000 · (3 · 10 + 1) = 31 000,

which is more almost 8 times faster.

OK, it is faster but why is it enough? We speed up computations by
skipping some values F (t), but maybe by doing this we lose some important
information? A simple qualitative analysis shows that we do not lose anything.
Indeed, one of the main reasons why convolution is used is that by averaging, it
decreases the noise. The noise values are usually wildly oscillating – which means
that they mostly consist of component with high frequency. When we apply
convolution with a non-negative function a(t) whose range is on the interval of
size 2h, we thus, in effect, filter out all the components of frequencies larger than
or equal to 2π/2h = π/h.



Why F-transform is more effective than a general convolution 5

And it is known that a signal F (t) that have no Fourier components of
frequency ≥ π/h can be uniquely reconstructed based on its values F (Tk) on a
grid Tk = T0+k ·h on a grid of step h; see, e.g., [10] and references therein. Thus,
indeed, the F-transform values, in principle, enables us to uniquely reconstruct
the whole function F (t). So, by limiting ourselves to these values, we are not
losing any information.

What about the multi-dimensional case? In the multi-dimensional case,
FFT still requires 1.5 · N · log2(N) steps, when N is the overall number of
values. So, similarly to the 1-dimensional case, we can conclude that the resulting
number of steps in FFT-based computation of convolution is N ·(3 · log2(N)+1).

However, in several dimensions, F-transform is more complicated. Usually,
the functions for the multi-dimensional case are products of 1-dimensional func-
tions, i.e., expressions of the type

A(Tk1 − t1) ·A(Tk2 − t2) · . . . ·A(Tkd
− td).

In this case, each point ti = (ti1, . . . , tid) is contained in one of the boxes
[Tk1

, Tk1+1] × . . . × [Tkd
, Tkd+1] and, therefore, the value x(ti) is involved in 2d

computations of the values Fk1+ε1,...,kd+εd , where each εi is equal to 0 or 1. So,
in this case, computation time of F-transform is equal to 2 · 2d ·N .

So, in the d-dimensional case, the threshold N0 at which F-transform is faster
is determined by the equality

2 · 2d ·N0 = N0 · (3 · log2(N0) + 1).

In this case, if we divide both sides by N0 and subtract 1 from both sides, we
get 2d+1 − 1 = 3 · log2(N0), so log2(N0) = (2d+1 − 1)/3 and

N0 = 2(2
d+1−1)/3.

This number grows very fast with dimenion. For d = 5, we have N0 = 221 ≈
2 · 106. For d > 5, the threshold is even higher. So, for such multi-D data,
unless we have more than a million points, it is more effective to use FFT-based
convolution techniques.

However, for most widely used cases of 2-D and 3-D data – e.g., for 2D and
3D images, F-transform is still more efficient:

– For d = 2, we have N0 = 27/3 ≈ 5.04, so F-transform is better for N ≥ 6.
– For d = 3, we have N0 = 25 = 32, so F-tranform is better for N ≥ 33.

And even for d = 4, we have N0 ≈ 1290.2, so F -transform is better for N ≥ 1291.
Thus, for d = 4, F-transform is better when we have more than a thousand signal
values.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional



6 Thi Minh Tam Pham, Irina Perfilieva, Olga Kosheleva, Vladik Kreinovich

Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI In-
cludes), EAR-2225395 (Center for Collective Impact in Earthquake Science C-
CIES), and by the AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI), and by the Institute for Risk and
Reliability, Leibniz Universitaet Hannover, Germany.

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A His-
torical Perspective, Oxford University Press, New York, 2017.

2. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, MIT Press, Cambridge, Massachusetts, 2022.

3. F. Di Martino et al., “A color image reduction based on fuzzy transforms”, Infor-
mation Sciences, 2014, Vol. 266, pp. 101–111.

4. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle
River, New Jersey, 1995.

5. J. M. Mendel, Explainable Uncertain Rule-Based Fuzzy Systems, Springer, Cham,
Switzerland, 2024.

6. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic,
Chapman and Hall/CRC, Boca Raton, Florida, 2019.

7. V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic,
Kluwer, Boston, Dordrecht, 1999.

8. I. Perfilieva, “F-transform”, In: Springer Handbook of Computational Intelligence,
Springer, 2015, pp. 113–130.

9. T. M. T. Pham, J., Janeček, and I. Perfilieva, “Fuzzy transform on 1-D mani-
folds”, In: Biomedical and Other Applications of Soft Computing, Springer, Cham,
Switzerland, 2022, pp. 13–24.

10. N. Trefethen, “Unbounded growth of band-limited functions”, Notices of the Amer-
ican Mathematical Society, 2025, Vol. 72, No. 6, pp. 666–669.

11. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.
12. H. Zámečniková and I. Perfilieva, “F-transform on triangulated domain”, In: M.-J.

Lesot, M. Reformat, S. Vieira, J. P. Carvalho, F. Batista, B. Bouchon-Meunier,
and R. R. Yager (eds.), Information Processing and Management of Uncertainty in
Knowledge-Based Systems, Abstracts of the 20th International Conference IPMU
2024, Lisbon, Portugal, July 22–26, 2024.


