For Which Activation Functions, Any Neural
Network Is Equivalent to a Takagi-Sugeno Fuzzy
System with Constant or Linear Outputs?

Barnabas Bede!, Olga Kosheleva?, and Vladik Kreinovich®

! DigiPen Institute of Technology
9931 Willows Rd., Redmond, WA 98052, USA, bbede@digipen.edu
2 Department of Teacher Education, University of Texas at El Paso,
500 W. University, El Paso, Texas 79968, USA, olgak@utep.edu,
https://www.cs.utep.edu/vladik/olgavita.html
3 Department of Computer Science, University of Texas at El Paso,
500 W. University, El Paso, Texas 79968, USA, vladik@utep.edu,
https://www.cs.utep.edu/vladik/

Abstract. It is desirable to make AI explainable, i.e., to translate its
black-box results into natural-language explanations. A reasonable first
step in this translation is to first translate Al results into a natural lan-
guage. There is already a technique successfully relating natural-language
descriptions with precise function — it is known as fuzzy technique. It is
therefore reasonable to use fuzzy technique for this first step towards
explainability. There are many different versions of fuzzy techniques, as
well as different versions of neural networks. It is therefore important to
analyze which versions of fuzzy techniques can, in principle, cover dif-
ferent versions of neural networks. In this paper, we provide an answer
to a particular case of this general question: for which activation func-
tions, the functions computed by a neural network can be computed by
Takagi-Sugeno systems with constant or linear outputs.

Keywords: explainable AI, Takagi-Sugeno systems, equivalence between
neural and fuzzy computations

1 Formulation of the problem

Need for explainable AI. While many recent results of using deep neural net-
works are spectacular, there is a problem: these results are often not explainable.
This is important in social applications — e.g., when the neural network is used
to decide whether to give a loan, whether to apply some treatment to a patient,
etc. The need for an explanation comes from the fact that the neural networks
are not perfect, they sometimes produce wrong answers. Of course, human de-
cision makers are also not perfect. However, with a human decision maker, you
can always ask for reasons for his/her decision and thus, check how convincing
these reasons are — and, based on this, filter out some incorrect decisions. For

2 Barnabas Bede, Olga Kosheleva, Vladik Kreinovich

a neural system, usually no reasons are provided, so it is not easy to filter out
wrong decisions.

Translation into fuzzy as a possible first step towards explainability.
Explainability means to be able to describe the decision in human-understandable,
natural-language terms. So, to achieve explainability, a natural idea is to look
for existing techniques that relate natural-language explanations with precise
computer-based decisions. This immediately brings us into the realm of fuzzy
techniques — techniques specifically designed to translate natural-language ex-
pert recommendations into precise human-understandable form; see, e.g., [1,3,
5-8].

Of course, translation into natural language does not necessarily mean that
we already have a convincing explanation — but sometimes we have it, and in
general, this may be a first step towards an explanation; see, e.g., [4].

Question that we deal with in this paper. There are many different versions
of fuzzy techniques and many different types of neural networks.

A neural network (see, e.g., [2]) usually consists of neurons each of which
takes values 1, ..., x, and produces a value y = s(ag + a1 - 1 + ... + ap - Tn),
where a; are numerical coefficients that are determined during the network’s
training, and s(z) is a continuous function known as an activation function.
Some neurons process the inputs v = (vy,...,v,,) to the network, other neurons
process the outputs of prevoously active neurons. One of the outputs of one of
the neurons is then returned to the user as the computation result V. Traditional
neurons use the sigmoid function s(z) = 1/(1+4exp(—z)), most current networks
use ReLU function s(z) = max(0, z), but many other activation functions have
been proposed and effectively used.

As fuzzy techniques, we will use one of most widely used versions: Takagi-
Sugeno techniques, in which a function V' = f(vy,...,v,,) is characterized by
rules of the type

if m;(v) then f;(v),

where 0 < m;(v) < 1 for all 4 and v and the functions f;(v) are usually either
constants or linear functions. The function computed by this technique is

>_mi(v) - fi(v)
Zl_: m;(v)

A natural question is: for what activated functions every function computed
by the corresponding neural network can be computed by a TS system? In this
paper, we provide an answer to this question.

flv) = (1)

2 What if we use Takagi-Sugeno systems with constant
outputs

Proposition 1. For each function s(z), the following two conditions are equiv-
alent to each other:

When Is a Neural Network Equivalent to a Fuzzy System 3

— the function s(z) is bounded, i.e., there exists a bound B such that |s(z)| < B
for all z, and

— every function computed by a network of neurons with this activation func-
tion can be computed by a Takagi-Sugeno system with constant outputs.

Proof. The value (1) is a convex combination of the values f;(v). So, when all
the outputs f;(v) are constant f;(v) = f;, all the values (1) bounded by the
largest of the absolute values | f;|. Hence, every function computed by a Takagi-
Sugeno system with constant outputs is bounded. Thus, if a function s(z) is not
bounded, then this same function — computed by a single neuron — cannot be
computed by a Takagi-Sugeno system with constant outputs.

So, to complete the proof, it is sufficient to prove that if the activation func-
tion is bounded, then any function computed by the corresponding neural net-
work can also be computed by a Takagi-Sugeno system with constant outputs.
Indeed, a function f(v) computed by a neural network comes from one of the
neurons and is, thus, bounded by the bound B: —B < f(v) < B. So, to compute
this function, we can use the following two Takagi-Sugeno rules:

if M then B;
2B
. B—f(v)
if 55 then — B.

In this case, the sum of the two functions m;(v) is:

fw)+B B-f(v) 2B

2B 2B 2B
so the result (1) of this system is simply equal to
(@) Si(0) +ma(o) - o) = LOLEE gy BESW gy
f0)+B _ B-f) f@)+B-B+f@) 200 .

2 2 2 2
The proposition is proven.

Discussion. A similar result — with the same proof — holds if we consider a neural
network in which different neurons can have different activation functions — as
long as these activation functions are bounded.

Proposition 2. For each neural network in which all activation functions are
bounded, every function computed by this network can be computed by a Takagi-
Sugeno system with constant outputs.

A similar argument shows that if we limited ourselves to a bounded domain D
of values v, then the result of any neural network, with any activation function,
can be computed by a Takagi-Sugeno system with bounded outcomes.

4 Barnabas Bede, Olga Kosheleva, Vladik Kreinovich

Proposition 3. Let D be a bounded domain. Then, for any neural network
with any activation functions that computes some function f(v), there exists a
Takagi-Sugeno system with constant outputs that computes f(v) for all v from
the domain D.

Proof. By definition, the function computed by a neural network is a composi-
tion of functions computed by individual neurons. Since all activation functions
are continuous, the function computed by each neuron is continuous. Thus, the
overall function computed by a neural network is continuous. A continuous func-
tion on a bounded domain is always bounded. Thus, we can use the construction
from the proof of Proposition 1.

3 What if we use Takagi-Sugeno systems with linear
outputs

Definition 1. We say that a function f(x1,...,xz,) is linearly bounded if there
exist positive coefficients cg,c1,...,cn for which we always have

[f(x1,..,zn)| Scoter- x|+ Fcn s |an)

Comment. For example, every linear function is linearly bounded, as well as each
function computed by a single ReLLU neuron.

Proposition 4. For each function s(z), the following two conditions are equiv-
alent to each other:

— the function s(z) is linearly bounded, and
— every function computed by a network of neurons with this activation func-
tion can be computed by a Takagi-Sugeno system with linear outputs.

Proof. Since all linear outputs are linearly bounded, one can easily check that
their convex combination (1) is also linearly bounded. So, if an activation func-
tion is not linearly bounded, it cannot be computed by such a Takagi-Sugeno
system. So, to prove this result, it is sufficient to prove that every function com-
puted by a neural network — consisting of neurons with linearly bounded neurons
— can be computed by a Takagi-Sugeno system with linear outputs.

It is easy to prove that the composition of linearly bounded functions is also
linearly bounded. So, the function f(v) computed by a neural network is also
linearly bounded, i.e., [f(v)| < co+c1-|v1]| + ...+ cm - |um]| for some ¢; > 0.

To proceed, we will use the following simple result: that if || < a + b for
some a > 0 and b > 0, then we can represent x as = z, + xp, where |z,| < a,
|zp| < b, and for fixed a and b, both z, and x; continuously depend on c. Indeed,
let us take, as x,, the closest to = value from the interval [—a, a], i.e.:

— if —a < x < a, we take x, = z;
— if x > a, we take z, = a; and

When Is a Neural Network Equivalent to a Fuzzy System 5

— if x < —a, we take x, = —a.

In all three cases, we can check that for z, = = — x,, we have |zp| < b. In the
first case, x;, = 0, so this inequality is clearly satisfied. In the second case, we
get x, = x — a. From x < a + b, we conclude that x — a < b, i.e., indeed, x; < b.
Since x > a, we have x, = £ — a > 0 and thus, indeed, x;, > —b. The third case
can be proved similarly.

If we have |z| < a1 + ...+ ag for some a; > 0, then, by applying the above
simple result first, we can conclude that x = x; + x_1, where |2z1] < a; and
|z_1] < a2 + ...+ ai. By applying this result again, this time to z_;, we can
conclude that z_; = x5 + z_o, where |zo| < ag and |x_3] < a3 + ..., etc. After
k — 1 steps, we conclude that = x1 + ... + xp, where |z;| < a;.

By applying this result to the inequality |f(v)| < co+c1-|vi]+. ..+ Cm - |vm],
we conclude that the function f(v) is equal to the sum f(v) = Fy(v) + Fy(v) +
..+ F(v), where |Fo(v)| < ¢o and |F;(v)| < ¢; - |v;]. Then, we can represent
this function by using the rules

“f mE (v) then f(v)” and “if 1/(m + 1) — m; (v) —m; (v) then 07,

where:
1 Fy(v) _ 1 Fo(v)
mE")_(U) = m - max <0, o > s mo (’U) = m - max (O’ _ o ,
1 F; 1 F
m (v) = —— -max (0, i(v) , m; (v) = —— max |0, — i))
m+1 Ci " Vi m+1 ¢ - v

fow)=(m+1)-co, f3(v)=—(m+1)-co,
ffw)y=m+1)-ci-v, fZ(0)=-(m+1)-c-uv.

In this case, the sum of all the functions m;(z) is 1, so the formula (1) turns
into a simple sum of products. Let us show that for each i, the sum of the
corresponding product terms in the formula (1) is equal to F;(v) — this will
guarantee that the sum of all the terms corresponding to all 7 is indeed equal to
the desired function f(v).

Indeed, when F;(v)/(c; - v;) > 0, then we have

mi(v) - fit(v) = %ﬂ . f}(zz “(m41)-¢ v, = F;(v),

while two other products corresponding to ¢ are Os: the second because m; (v) =
0 and the third because the corresponding output function is 0. The proof for
the case when F;(v)/(c; - v;) < 0 is similar. The proposition is proven.

Comment. To represent each function, we used 3m + 3 rules — a very feasible
amount. We could get slightly fewer rules, namely, 3m + 2, if, to describe Fy(v),
we would use a construction from Proposition 1.

6 Barnabas Bede, Olga Kosheleva, Vladik Kreinovich

Discussion. A similar result — with the same proof — holds if we consider a neural
network in which different neurons can have different activation functions — as
long as all these activation functions are linearly bounded.

Proposition 5. For each neural network in which all activation functions are
linearly bounded, every function computed by this network can be computed by a
Takagi-Sugeno system with linear outputs.

Comment. These results cannot be directly extended to the case when an activa-
tion function is quadratically bounded, i.e., bounded by some quadratic function
of the inputs. Indeed, in this case, functions computed by Takagi-Sugeno systems
are still quadratically bounded, but a composition of two quadratic neurons, with
5(z) = 22, already computes a function z* that grows faster than any quadratic
function — and thus, cannot be computed by such Takagi-Sugeno systems. We
can, however, get a similar result if we use hierarchical Takago-Sugeno systems,
in which the result of one such system serves as an input to other systems.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI In-
cludes), EAR-2225395 (Center for Collective Impact in Earthquake Science C-
CIES), and by the AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI), and by the Institute for Risk and
Reliability, Leibniz Universitaet Hannover, Germany.

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A His-
torical Perspective, Oxford University Press, New York, 2017.

2. 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge,
Massachusetts, 2016.

3. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River,
New Jersey, 1995.

4. V. Kreinovich, Towards Ezxplainable Fuzzy Al: concepts, paradigms, tools, and tech-
niques, Springer Verlag, Cham, Switzerland, 2022.

5. J. M. Mendel, Ezplainable Uncertain Rule-Based Fuzzy Systems, Springer, Cham,
Switzerland, 2024.

6. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic,
Chapman and Hall/CRC, Boca Raton, Florida, 2019.

7. V. Novék, 1. Perfilieva, and J. Mockot, Mathematical Principles of Fuzzy Logic,
Kluwer, Boston, Dordrecht, 1999.

8. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338-353.

