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Abstract. In this paper, we show that, according to recent empirical
studies, there may be some relation between all these phenomena. Specif-
ically, we mention several interesting related numerical similarities.
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1 Large Language Models and seven plus minus two law:
a possible relation

Hallucinations are a problem for Large Language Models (LLMs).
Large Language Models are fascinated. They produce poems, texts, class curric-
ula, it looks like they can produce almost anything we want. However, what they
produce is not always reliable: reasonably often, they produce answers that are
smooth and may seem reasonable, but are, in reality, wrong. This phenomenon
is known as hallucinations.

When hallucinations were first detected, the hope was that additional train-
ing will deal with this phenomenon — but this did not happen. A recent paper [3]
mentions that, in spite of all the further training, the hallucination rate remains
at the approximately 15% level.

‘We humans can often detect hallucinations, and what does that mean.
In many cases, humans users can easily detect hallucinations by using simple
logic to compare LLMs with facts that we know — and, by the way, the LLMs
knows the same fact, but it lacks an ability to compare its conclusions with these
facts.
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From this viewpoint, the main reason for hallucinations is that LLMs, while
making perfect statistical conclusions, are not very good in thinking logically.
We humans can both provide some statistical conclusions and we can also use
logic.

Statistical conclusion is something that all animals do: the understanding of
this started with Pavlov’s experiments, where dogs learns artificially introduced
statistical dependencies after a reasonably small (in comparison with neural net-
works) number of iterations. Can animals make logical conclusions? Doubtfully.
Even modern humans, logic-trained at schools, are not very good in logic; see,
e.g., [4] — and most probably, our ancestors were even worse.

Since LLMs use a lot of optimization to process data — and they use practi-
cally all the knowledge from everywhere in the world — it looks like 15% is the
best we can do if only use statistics, but not logic. What is 15%? It is approxi-
mately one out of seven. So this means that if we only use statistics, then one
wrong answer out of seven is the best we can do.

What are the possible biological consequences of this fact? How is this
related to humans? Since out ancestors were not very good in logical reasoning,
they had to live with this limitation, they has to take into account that 1/7 of
their decisions would be wrong — and evolution should have adjusted our brains
to this fact.

What can this imply? Since we cannot reach error rate lower that 1/7, it
means that it makes no sense to view and consider things with better accuracy —
just like if we want to compute the distance with accuracy 10%, there is no need
to measure velocity or time with higher accuracy. And what does this mean that
we have accuracy 1/77 It means that, e.g., on the interval [0, 1] (or on any other
interval), we can only distinguish at most 7 different values.

Possible relation to seven plus minus two law. This is exactly what psy-
chologists observe: the famous “seven plus minus seven law” states that, in gen-
eral, we can only consider 7 plus minus 2 different options — hereby we perceive
seven major colors, we have seven days in a week, etc.; see, e.g., [10, 13].

So maybe the LLMs hallucination rate is an explanation for the 7 £+ 2 law?

2 Seven plus minus two law and fuzzy techniques

How is this all related to fuzzy? We are trying to understand how people
think — and to explain why they think and reason that way. In this analysis, it is
reasonable to use fuzzy techniques, techniques specifically invented to describe
imprecise (“fuzzy”) human statements and human reasoning in precise terms;
see, e.g., [1,5,9,11,12,15].

Let us use fuzzy techniques to brainstorm about uncertainty of human rea-
soning? Let us start with a situation in which we have no knowledge about some
statement.

— We have no reasons to believe that this statement is true — if we had some
reasons, our degree of confidence in this statement would be closer to 1.
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— We also have no reasons to believe that this statement is false — if we had
some reasons, our degree of confidence in this statement would be closer to
0.

In such situations, it is reasonable to describe our resulting degree of confidence
in this statement by a value which is equally distant from 0 and 1 — i.e., by the
value 0.5. This value thus corresponds to unknown.

Suppose now that we gained some knowledge. This means that instead of
“unknown”, we have a smaller degree of uncertainty, which can be naturally
described as “somewhat unknown”. How can we describe the hedge “somewhat”?
A usual way in fuzzy technique is to use z? to describe “very” and to use the
inverse operation — square root — to describe “somewhat”. If we take the square
root of 0.5, we get the degree close to 0.7 — so the remaining degree of uncertainty
is 1—0.7 = 0.3. With this degree of uncertainty, we get 1/0.3 ~ 3 different levels.

What if we gain even more knowledge? In this case, we again apply the square
root — this time to the square root of 0.5 — and get approximately 0.84, with the
remaining degree of uncertainty 1 — 0.84 = 0.16 — again close to 1/7 (or maybe
to 1/6). So this is maybe why we have 1/77?

Comments.

— Many fuzzy papers mention the 7+ 2 law to explain why, usually, we form
7+ 2 natural language terms to describe the value of each quantity, e.g., very
small, small, etc. This way, this law explains the empirical success of such
fuzzy models. What we decided is to do it the other way around: use fuzzy
techniques to explain the 7 £ 2 law itself?

— Why apply twice and not more times? Some arguments in favor of two times
are given in [7].

— But what if we still apply the operation one more time? This time, we will
get 0.917, so the remaining degree of uncertainty is 0.083 — which is almost
exactly 1/12. This may be the reason why 12 is often used by us — as in a
dozen or as in a musical scale.

This somewhat explains 7, but how can we explain plus minus 2?7 Of
course, 0.15 is an approximate number, and, correspondingly, 7 is an approxi-
mate number. How accurate is it? Usually, we have less uncertainty about our
uncertainty than we have uncertainty about the actual value. So, to gauge how
uncertain we are about number 7, we need to use the previous — higher — level
of uncertainty, where the uncertainty was about 0.3. When relative uncertainty
is 0.3, the absolute uncertainty with which we take the value 7 is 47 - 0.3, which
is exactly 7 &+ 2 that psychologists have observed.

Comment. So, we can keep in mind at the same time 7 4+ 2 objects, between
7—2=2>5and 7+ 2 = 9. This means that some people can keep no more than
5, others can keep up to 9. This may be a reason why in Islam, where it is
emphasized that all the wives should get the same good attention and care, a
person can have no more than 4 wives — this way, even a person who can take
into account only up to 5 objects, shall be able to take into account both himself
and all his wives.
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3 How is this related to word embedding

Empirical fact about word embedding. Researchers is natural language
processing have found a way to check how close are different concepts. For this
purpose, they characterize each term by several numerical quantities. This way,
each word is represented by a tuple consisting of several numbers. In this sense,
words are embedded into a multi-dimensional space. It turns out that distance
in this space is a good indication of how close the original concepts are — e.g.,
the word “doctor” appears close to the related word “nurse”.

Then, they use Principle Component Analysis PCA (see, e.g., [14]) to reduce
the dimension of the data space while preserving the notion of closeness as
accurately as possible. It turns out that we can retain practically all information
about closeness if we only keep the three main dimensions. A natural question
is: why 37

Zipf’s law can help. To explain, let us yet another empirical law — Zipf Law
(see, e.g., [2, 6, 8]) — that says that if we sort features of objects by importance, the
importance of the i-th term is proportional to 1/i. This law was first described
in linguistics: if we sort all the words from a language by their frequency, then
the frequency of the i-th word is proportional to 1/i. Later on, it turned out that
this law is ubiquitous: e.g., it describes the distribution of companies by size.
In our case, Zipf law says that when we apply PCA to word embedding, the
contribution of the i-th dimension is proportion to 1/i. The usual Euclidean
distance is the sum of the squares of the differences. According to the 7+ 2 law,
we can perceive 7 factors, so the contribution of all 7 dimensions is equal to

1 1
1+ +...+ 5 =15l

22 7

By the same law, it is sufficient to have the sum of fewer terms — as long as the
resulting sum is approximately equal to this number, with accuracy of 1/7. In
other words, it is sufficient to make sure that the sum of the terms corresponding
to selected dimensions is larger than or equal to

1.51
1.51 — — ~ 1.30.
7

For two dimensions, we have

1
1+ 52 = 1.25 < 1.30,
so using only two dimensions is not enough. However, for three dimensions, we

already have
1 1
1—%2—2+3—2 =1.3611... > 1.30.
This explains why empirically, three dimensions are sufficient to describe our
commonsense concept of closeness between concepts.



Large Language Models, Fuzzy Logic, etc. 5

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI In-
cludes), EAR-2225395 (Center for Collective Impact in Earthquake Science C-
CIES), and by the AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI), and by the Institute for Risk and
Reliability, Leibniz Universitaet Hannover, Germany.

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A His-
torical Perspective, Oxford University Press, New York, 2017.

2. D. Cervantes, O. Kosheleva, and V. Kreinovich, “Why Zipf’s Law: A symmetry-
based explanation”, International Mathematical Forum, 2018, Vol. 13, No. 6,
PP. 255-258.

3. P. J. Denning, “In Large Language Models we trust?”, Communications of the
ACM, 2025, Vol. 68, No. 6, pp. 23-25.

4. D. Kahneman, Thinking, Fast and Slow, Farrar, Straus, and Giroux, New York,
2011.

5. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle
River, New Jersey, 1995.

6. O. Kosheleva, V. Kreinovich, and K. Autchariyapanikul, “Commonsense expla-
nations of sparsity, Zipf Law, and Nash’s bargaining solution”, In: N. N. Thach,
D. T. Ha, N. D. Trung, and V. Kreinovich (eds.), Prediction and Causality in
Econometrics and Related Topics, Springer, Cham, Switzerland, 2022, pp. 67-74.

7. O. Kosheleva, V. Kreinovich, V. Timchenko, and Y. Kondratenko, “Two Is Enough,
but Three (or More) Is Better: in AI and Beyond”, In: A. I. Shevchenko and
Y. P. Kondratenko (eds.), Artificial Intelligence: Achievements and Recent Devel-
opments, River Publishers, Denmark, to appear.

8. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman Publ., San
Francisco, California, 1983.

9. J. M. Mendel, Ezplainable Uncertain Rule-Based Fuzzy Systems, Springer, Cham,
Switzerland, 2024.

10. G. A. Miller, “The magical number seven plus or minus two: some limits on our
capacity for processing information”, Psychological Review, 1956, Vol. 63, No. 2,
pp. 81-97.

11. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic,
Chapman and Hall/CRC, Boca Raton, Florida, 2019.

12. V. Novék, I. Perfilieva, and J. Mockot, Mathematical Principles of Fuzzy Logic,
Kluwer, Boston, Dordrecht, 1999.

13. S. K. Reed, Cognition: Theories and Application, SAGE Publications, Thousand
Oaks, California, 2022.

14. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman and Hall/CRC, Boca Raton, Florida, 2011.

15. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338-353.



