Fuzzy and Fuzzing:
Contrary to the Usual Viewpoint, Fuzzy
Techniques Naturally Lead to Fuzzing

Stephanie Reyes!, Saied Tizpaz-Niari?, and Vladik Kreinovich!
Department of Computer Science, University of Texas at El Paso
500 W. University, El Paso, TX 79968, USA
sreyes31@miners.utep.edu, vladik@utep.edu
2Department of Computer Science, University of Illinois at Chicago
851 S. Morgan St., Chicago, IL 60607, USA, saeid@Quic.edu

Abstract

At present, one of the most effective and widely used methods of soft-
ware testing is a method known as fuzzing. The name of this method come
from the same word fuzzy as fuzzy logic and related fuzzy techniques.
However, the authors of the fuzzing technique have always emphasized
that there is no relation between the two uses of this word. It is indeed
true that the invention of fuzzing was not related to fuzzy logic. However,
we show, in this paper, that a straightforward use of simple fuzzy ideas
naturally leads to fuzzing — in this sense, these two uses of the word fuzzy
are indeed related.

1 Introduction

Traditional approach to software testing. The modern world runs on
software. A minor mistake in a program can cause a big disaster. It is therefore
very important to test each program — and to find all its faults — before the
program is released for use.

In the past, software tests used three main ideas. One of these ideas is to
test the program on randomly generated inputs. The more random inputs we
test, the larger the probability that the program will also work well on other
random inputs.

Another idea is caused by the fact that in most cases, there are bounds
on possible values of each input. For example, for medical software, there are
bounds on possible values of body temperature, there are bounds on possible
values of blood pressure, etc. Extreme cases of each of the variables are rare,
but it is important to make sure that the software works well in such situations.
So, it is reasonable to test the software also on such extreme values.



The third idea comes from the fact that programs usually include branching,
when depending on some condition the program perform different actions. It
is therefore important to make sure that for each such branching, the program
works well for some examples from both branches — i.e., for each branching, we
need to come up with testing examples from both branches.

Traditional approach to software testing is not always enough: enter
fuzzing. The first two ideas have helped to find many faults, including rare
faults that occur when some of the inputs take extreme values. However, some-
times there are also rare faults that happen for non-extreme inputs. Such faults
are difficult to catch by traditional software engineering techniques. To catch
such faults, software engineers invented a new software testing technique that
they called fuzzing — the techniques that is now actively and successfully used
in software testing.

This technique is, in effect, a clever combination of what we listed as the first
idea (testing on random inputs) and the third idea (testing on both branches).
The main difference between fuzzing and the straightforward application of the
third idea is that instead of focusing on a single branching, we take into account
all the branchings that the program goes through on a given input. Specifically,
for each input, we record what selection the program made on each of the
branchings; this sequence of selections forms what, in this technique, is called a
path.

In this technique, at each stage, we keep a list of inputs — which is selected
in such a way that different inputs from this list lead to different paths. To
achieve this goal, we start with a single random input — which forms the first
element of this list. At each moment of time, we randomly — usually, with equal
probability — select one of the inputs from the list, modify the selected input and
test the program on this modified input. If for this input, the path is different
from all the previously observed paths, this input is added to the list.

This, in a nutshell, is what fuzzing is all about.

A toy example explains why fuzzing is often efficient. At first glance,
the above technique, while reasonable, does not sound like a spectacular idea
that can successfully detect rare faults, but it does. To explain why, let us use
the toy example from one of the pioneering papers on fuzzing [2, 3].

Suppose that the program is checking 4-letter combinations, and there is a
bug that only occurs when you input one of the possible combinations — namely,
the combination ‘badl’. In a (hopefully) easily understandable pseudocode, this
bug has the following form:

if (letter[0] == ’b’)

{if (letter[1] == ’a’)
{if (letter[2] == ’4’)
{if (letter[3] == ’17)

{print "wrong result"}}}}

If we simply perform random testing by testing all possible combinations of four
ASCII symbols with equal probability, then, since there are 256 such symbols,



the probability of finding this bug is equal to 1/256%. Thus, on average, to find
this bug, we will need 256 = (28)* = 232 ~ 4. 10 iterations. In this simple
example, such an exhaustive testing is possible, but in more complex situations,
we will not find the bug after any realistic number of iterations.

If we use fuzzing, the number of needed iterations decreases drastically. In-
deed, once we find a word that starts with the letter ‘b’, we invoke the first
if-statement and thus, get an input for which the path is different from the path
corresponding to the original input. Since the probability that we will select the
first symbol out of 4 is 1/4, and the probability that the selected first symbol
being ‘b’ is 1/256, the overall probability that we will get a word starting with
‘b’is 1/4-1/256 = 1/1024. So, we need, on average, 1024 iterations to find such
an input.

Now, according to the above-described general fuzzing algorithm, we have
two inputs that we will modify. The probability that we will select to modify the
second input is 1/2, and the probability that we will modify the second letter
and that the modified second letter is ‘a’ is 1/2024. Thus, the probability that
by applying a modification, we will find a word that starts with ‘ba’ is equal to
1/2-1/1024 = 1/2048. So, on average, once we find the second selected input,
after 2-1024 = 2048 more iterations, we will find the input that starts with ‘ba’
and for which, thus, the path will be different. So now, we have three inputs to
modify.

Similarly, once we find the third selected input, after, on average, 3 - 1024
additional iterations, we will find a word that starts with ‘bad’ and for which,
therefore, the path will be different. Thus, we will add this word as the fourth
selected input. Finally, after, on average, 4 - 1024 iterations after finding the
fourth selected input, we will get the word ‘bad!” and thus, find the bug.

Overall, this process requires, on average,

1024 +2- 1024 4+ 3 - 1024 + 4 - 1024 = 10 - 1024 = 10240 ~ 10*

iterations. This is a much smaller number than more than a billion iterations
needed for the random search. So, indeed, fuzzing is a very eflicient testing
method.

A natural question. The name of the fuzzing method comes from the same
word “fuzzy” as fuzzy logic (see, e.g., [1, 6, 8, 9, 10, 11, 13]). So, a natural
question is: Are these two ideas related?

The authors of the fuzzing method did not use fuzzy logic idea in coming
with this method, so a general impression is that these two ideas are not related.
But is this impression really true?

What we do in this paper. In this paper, we show that, contrary to the
general impression, there is a relation between these two ideas.

Specifically, we will first describe the main idea behind fuzzing in common-
sense terms. In principle, there are two main approaches to translate this idea
into a precise algorithm: probabilistic approach and fuzzy approach. We will
then show that:



e a straightforward probabilistic translation does not lead to an efficient
algorithm, while

e a straightforward fuzzy translation leads exactly to the efficient fuzzing
algorithm.

2 How a straightforward use of simple fuzzy tech-
niques naturally leads to fuzzing

Let us first describe the main idea behind fuzzing in commonsense
terms. The main idea behind fuzzing is that we start with a random input,
and we repeatedly modify this input. Once we find an input that leads to a
path which is different from the path corresponding to the first selected input,
we add this input to the list of selected inputs, and we start modifying both
selected inputs. In general, once we find an input for which the path differs from
all previously observed paths, we add this input to the list of selected inputs,
and we start modifying all the inputs from the new list of selected inputs.

In this general description, we do not specify the relative frequencies with
which we modify each of several modified inputs. Let us use common sense to
determine these frequencies.

How to use common sense to determine the relative frequencies with
which we should modify each of the selected inputs. When we have
several selected inputs, it may happen that about some of them, we are more
confident that a modification of this input will lead to the fault-revealing input
ip that we want to find. In this case, it makes sense to modify these more-
confident inputs more frequently. So, to decide which selected inputs should be
modified more frequently, let us analyze to what extent it makes sense to believe
that modifying each of these inputs will lead to the fault-revealing input.

The main reason why we believe that a modification of the very first —
randomly selected — input ¢; will eventually leads to finding the fault-revealing
input is that this input is somewhat similar to the fault-revealing input i; we
will denote this by i1 ~ ;. Let d; denote our degree of confidence that in this
case, we will find the fault-revealing input after each iteration.

By our construction, the second selected input i is somewhat close to the
first selected input iq: i =~ i1. From the fact that the second selected input io
is somewhat close to the first selected input i; and the first selected input 4y is
somewhat close to the fault-revealing input 5, we can conclude that the second
selected input 4o is also close to the fault-revealing input 7, — but probably with
a lower degree of certainty do, since now the conclusion that iy = 7} is based on
two statements about which we are not 100% certain:

’ig ~ il and il =~ ’ib.

Similarly, we can conclude that the third selected input ¢3 is somewhat close
to the fault-revealing input i, but this conclusion is based on a chain of three



statements:
ig ~ ’ig, ’i2 ~ il, and il ~ ib.

In general, the longer the chain, the smaller our confidence, so the degree ds
to which 73 is somewhat close to the fault-revealing input 7; is probably even
smaller than ds.

In general, for each k, we can conclude that the k-th selected inputs iy is
somewhat close to the fault-revealing input 4;, but this conclusion is based on
a chain of k statements:

Ik X lgp—1, ..., I3 =11, and i1 = 1p.

The longer the chain, the smaller our confidence, so the degree d to which i
is somewhat close to the fault-revealing input i; is probably decreasing with k.

Let is now apply straightforward probabilistic and straightforward fuzzy
approaches to estimate the degrees dy.

What if we use a straightforward probabilistic approach. In the usual
probabilistic approach, the degree of confidence is described by a probability.
In this case, all basic degrees of confidence:

e that i1 ~ 1,

e that iy ~ i1,

e ...,and

e that ip =~ ip_1,

are all interpreted as probabilities. For each k, the conclusion that ¢ is some-
what close to i, can be made if k£ basic statements hold. If we know the prob-
ability dy of each of k events iy ~ ix_1, ..., i2 &~ i1, and i; ~ i, what is the
probability that all these k vents happen at the same time?

In general, this answer depends on the correlation between these events.
However, a typical situation in probabilistic approach is that we have no infor-
mation about the correlation. In this case, since we have no reasons to believe
that these events are positively or negatively correlated, it makes sense to as-
sume that these events are not correlated at all —1i.e., that they are independent.

This assumption not only follows informally, it also comes from a natural
idea that we should not add certainty where there is none. Uncertainty in
probabilistic approach is described by Shannon’s entropy. So, in precise terms,
this idea means selecting, out of all possible joint distributions, the one for which
the entropy is the largest possible; see, e.g., [5]. For the case of several events
about which we only know their probabilities, this Mazimum Entropy approach
indeed leads to the conclusion that these events should be independent.

For independent events, the probability that they all occur together is equal
to their product. In our case, the probability that iy ~ iy — i.e., that a modi-
fication of the k-th selected input will lead to the fault-revealing input 4; — is
thus equal to dy = d¥. In particular, it makes sense to take, as di, the actual



probability that a modification of the first selected input will lead to the fault-
revealing input — i.e., in the above example, the value 1/(2-10%) = 0.5-107°.
The resulting probability that a modification of the second selected input can
lead to the fault-revealing input is equal to d? and is, thus, more than a billion
times smaller than d;. For other selected inputs, the resulting probability is
even smaller. So, in this case, with probability close to 1 we will ignore all the
selected inputs except for the first one.

So, in effect, if we use straightforward probabilistic approach, we get back to
the original random search — which, as we have mentioned, is not very efficient.
So, the use of straightforward probabilistic approach defeats the main purpose
of adding fuzzing — to find the bugs faster.

What if we use a straightforward fuzzy approach. What will happen if, to
describe “and”, instead of the probabilistic approach, we use a fuzzy approach?
Readers who are familiar with fuzzy logic know that, in general, there are many
different operations of fuzzy logic that correspond to “and”; these operations
are known as t-norms. However, if you ask many people who have heard about
fuzzy but who are not very familiar with the details of fuzzy techniques, they
will answer that in fuzzy logic, “and” corresponds to minimum. Minimum is one
of the two “and”-operations initially proposed by Lotfi Zadeh in his pioneering
paper [13] (the other was product); minimum is still one of the most actively
used t-norms.

So what happens if in translating the above commonsense expression into a
precise algorithm, we use minimum to describe “and”? Let us recall that in this
expression, the statement i, ~ i, comes from applying “and” to the following k
statements:

e R 1, .., o211, 11 ~1p,

each of which has the same degree d;. Thus, the degree dj to which the k-th
selected input 7 is somewhat close to the buggy inout i, can be estimated as
the minimum min(ds,...,d;) of k numbers each of which is equal to dy. This
minimum is, of course, equal to d;.

So, in the straightforward fuzzy approach, for all the selected inputs, the
degree to which this input is somewhat close to the fault-revealing input is
the same. Thus, it makes sense to modify each of the selected with the same
probability — which is exactly the idea that makes fuzzing successful.

So, a straightforward use of simple fuzzy logic indeed naturally leads to the
empirically efficient fuzzing algorithm.

3 Let us go beyond straightforward probabilistic
and fuzzy approaches

Why it is desirable to go beyond. Our explanation of fuzzing was based on
using the simplest version of fuzzy technique — the version that uses minimum as
the “and”-operation (= t-norm). This explanation may be somewhat convincing
to those who are not very familiar with the variety of fuzzy techniques. However,



as we have mentioned in the previous section, those who are familiar with fuzzy
techniques know that there are many different t-norms. For these readers, we
need a (somewhat) more convincing explanation. This is what we will do in this
section.

Let us go back to the main ideas behind the probabilistic approach. To
come up with a more convincing explanation, let us take into account that after
all, whatever approach we use, we need to describe the frequencies with which
we will modify different selected inputs. In other words, what we ultimately
need is probabilities. So, let us go back to the probabilistic approach.

Comments. This does not means that we are abandoning fuzzy ideas: while
fuzzy agrees are different from the objective frequency-based probabilities, we
can always view fuzzy degrees as subjective probabilities. This view helps us
understand that fuzzy techniques, in effect, contributed to the probability anal-
ysis (see, e.g., [7]): namely, they show that if we only know the probabilities
of several events, and we want to find the probability of them happening at
the same time, we can use one of the t-norms — and we can select the t-norm
that best describes this specific area. This is, in effect, what happened with
MYCIN, the historically first expert systems for diagnosing and treating rare
blood diseases; see, e.g., [4].

What do we know. The main challenge that we faced was that for several
events, we only know the probabilities of different events, but we do not have
any information about their correlation. In this situation, we need to find
an estimate for the probability that several events occur at the same time.
It is known (see, e.g., [12]), that if we have several events Ej,..., Ej, with
probabilities p1, ..., pk, then the probability p that all these events occur at the
same time can take any value between the following bounds:

max(py + ... +pr — (k—1),0) < p < min(py,...,Dk). (1)

These inequalities were first proposed by Fréchet and are, thus, known as Fréchet
inequalities.

What can we conclude. We want to find the value p within the interval (1)
that will lead to the most efficient search for a fault-revealing input. In other
words, we want to find the value for which the corresponding objective function
attains its largest possible value.

According to calculus, the maximum of a function of one or several variables
on a bounded domain is attained either at a stationary point —i.e., at a point at
which all partial derivatives are equal to 0 — or on the boundary of the domain.
When the domain is small, the probability that it contains a stationary point
is very small. So, with high probability, we can conclude that the maximum of
the objective function is attained at the boundary of the domain.

In our case, since the values p; are very small, so the left-hand side of the
inequality (1) is equal to 0 and the right-hand side is very small. Thus, the
interval domain of possible value of p — which is described by the inequality



(1) — is very small. So, according to our conclusion, with high probability, the
optimal value p is attained at the boundary of this interval domain, i.e., at one
of the endpoints of this interval. In other words, we have two alternatives: either
p =0, or p is equal to the minimum min(ps, ..., pg)-

The alternative p = 0 means that we modify the second, third, etc., selected
inputs with probability 0 — i.e., in effect, that we do not use them for modifica-
tion at all. In other words, this alternative means that we only modify the very
first input — in which case selecting other inputs makes no sense, we can as well
go back to the original often-not-feasible random choice, with no fuzzing.

So the only remaining case is indeed the case when p = min(ps,...,px) —
i.e., exactly the case that corresponds to the above-described straightforward
simple fuzzy approach, the case that explains the empirically successful fuzzing
techniques. So, this way, be get a (hopefully) more convincing fuzzy-related
explanation for these techniques, an explanation that does not depend on the a
priori selection of a specific “and”-operation (t-norm).

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI In-
cludes), EAR-2225395 (Center for Collective Impact in Earthquake Science C-
CIES), and by the AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI), and by the Institute for Risk and
Reliability, Leibniz Universitaet Hannover, Germany.

References

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[2] M. Bohme, D. Liyanage, and V. Wiistholz, “Estimating residual risk in
greybox fuzzing”, Proceedings of the 29th ACM Joint Furopean Software
Engineering Conference and Symposium on the Foundations of Software
Engineering ESEC/FSE’21, Athens, Greece, August 23-28, 2021, pp. 230
421, https://doi.org/10.1145/3468264.3468570

[3] M. Béhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
guzzing as Markov chain”, IEEE Transactions on Software Engineering,
2017, pp. 489506, https://doi.org/10.1109/TSE.2017.2785841

[4] B. G. Buchanan and E. H. Shortliffe, Rule Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley, Reading, Massachusetts, 1984.



[5]

[6]

[7]

[10]

[11]

[12]

[13]

E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of Sci-
ence, Cambridge University Press, Cambridge, UK, 2003.

G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

V. Kreinovich, “Lotfi Zadeh: a Pioneer in AI, a Pioneer in Statistical
Analysis, a Pioneer in Foundations of Mathematics, and a True Citizen
of the World”, International Journal of Intelligent Technologies and Ap-
plied Statistics, 2018, Vol. 11, No. 2, pp. 87-96.

J. M. Mendel, FEzplainable Uncertain Rule-Based Fuzzy Systems, Springer,
Cham, Switzerland, 2024.

H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

V. Novék, I. Perfilieva, and J. Mockor, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

W. Pedrycz, A. Skowron, and V. Kreinovich (eds.), Handbook on Granular
Computing, Wiley, Chichester, UK, 2008.

D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-
cedures, Chapman and Hall/CRC, Boca Raton, Florida, 2011.

L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338—
353.



