
How to Generalize Softmax to the Case When an
Object May Not Belong to Any Given Class

Dinh Tuan Nguyen, Vladik Kreinovich, Olga Koshevela, and Nguyen Hoang
Phuong

Abstract The usual softmax formula transforms the degrees to which we are con-
vinced that an object belongs to different classes – as computed by subnetworks of
a neural network – into the probabilities that this objects belongs to each class. The
sum of these probabilities is always 1 – which means that this formula implicitly
assumes that the given object belongs to one of the given classes. In practice, how-
ever, there is always a possibility that an object does not belong to any of the given
classes. To take this possibility into account, it is desirable to appropriately gener-
alize softmax formula. In this paper, we show that all extensions that satisfy several
reasonable conditions form a 1-parametric family; these extensions correspond to
adding a constant to the denominator of the softmax formula.

1 Formulation of the Problem

What is softmax: a brief reminder. In many practical situations, we need to clas-
sify an object into one of the classes: e.g., based on a X-ray, decide between possible

Dinh Tuan Nguyen
Institut für Photogrammetrie und GeoInformation (IPI), Leibniz Universität Hannover
Nienburger Str. 1, D-30167 Hannover, Germany, e-mail: tuan.nguyen@ipi.uni-hannover.de

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: vladik@utep.edu

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: olgak@utep.edu

Nguyen Hoang Phuong
Artificial Intelligence Division, Information Technology Faculty, Thang Long University
Nghiem Xuan Yem Road, Hoang Mai District, Hanoi, Vietnam
e-mail: nhphuong2008@gmail.com

1



2 Dinh Tuan Nguyen et al.

diagnoses. In the last decades, neural network-based systems turned out to be most
successful in this task. In these systems, for each class i, the corresponding part of
the neural networks computes a degree of confidence xi. Based on the values, we
compute the probability pi that the given object belongs to the i-th class:

pi =
f (xi)

∑
j

f (x j)
, (1)

where usually we take
f (x) = exp(α · x), (2)

for some α . For the case when the function f (x) is described by the formula (2), the
formula (1) is known as softmax; see, e.g., [1].

If want to select a single class, we pick up the class for which the probability pi
(that the object belongs to this class) is the highest, but we also get probabilities that
this classification may be wrong, and that the object belongs to other classes.

Need to go beyond softmax. Softmax implicitly assumes that the object belongs
to one of the given classes – since the sum of the probabilities pi corresponding
to different classes is 1. However, in practice, there is usually a possibility that the
given object does not belong to any of these classes.

For example, a self-driving car needs to constantly compare the current image
of its environment with the previous images, so that, based on the changes in the
positions of different objects, we will be able to predict their locations in the next
moments of time – and navigate accordingly. For this purpose, we need to identify
each object in the new image with one of the objects in the previous image. However,
it may be that the new objects has just appeared, it was not visible before: e.g., a new
car has just entered the intersection. In this case, it is desirable that the system should
inform us that this is probably a new object, and not one of the previously observed
objects.

In this case, in addition to the probabilities p1, p2, . . . that the new object belongs
to the each of the known classes, we would like to also have a probability p0 that
the object does not belong to any of the known classes. In this arrangement, the sum
of all the probabilities – including p0 – should also be equal to 1:

p0 + p1 + p2 + . . .= 1. (3)

Formulation of the problem in commonsense terms. It is therefore desirable to
come up with formulas – like (1) and (2) – that would enable us to compute all these
probabilities based on the values x1,x2, . . ..

Of course, there are many such possible formulas. So we would like to come
up with reasonable conditions that would uniquely – or at least almost uniquely –
determine the corresponding formulas.



How to Generalize Softmax 3

What we do in this paper. In this paper, we provide such conditions, and we show
that they indeed uniquely determine some formulas, formulas that form a natural
generalization of softmax.

2 Analysis of the problem and the first result

Notations. Let us denote the number of possible classes by n. Then, what we need
is n+1 functions that describe how the desired probabilities depend on the inputs:

pi = fn,i(x1, . . . ,xn), i = 0,1, . . . ,n, (4)

for which we always have
p0 + p1 + . . .+ pn =

fn,0(x1, . . . ,xn)+ fn,1(x1, . . . ,xn)+ . . .+ fn,n(x1, . . . ,xn) = 1. (5)

First natural requirement: continuity. Values xi come from processing inputs.
Inputs usually come from measurements, and measurements are never absolutely
accurate. There is always a difference between the measurement result and the actual
value of the corresponding quantity. As a result, the values xi – that we computed by
the neural network based on the measurements results – are also somewhat different
from the ideal values – the values that we would have gotten if we could use the
actual (unknown) values of the corresponding quantities.

We want to make sure that when the measurements are very accurate – so that
the measurement values are very close to the actual value, and thus, the computed
values xi are close to their ideal values – the resulting probabilities should be close
to what we would get if we used the ideal values xi. In precise terms, if x(m)

j → x j

for all j, then we should have fn,i(x
(m)
1 , . . .)→ fn,i(x1, . . .) for all i. In other words,

all the functions fn,i(x1, . . . ,xn) should be continuous.

Second natural requirement: permutation invariance. The probabilities pi
should not depend on the order of the alternatives. In precise terms, for every per-
mutation π : {1, . . . ,n} 7→ {1, . . . ,n}, if we have (4), then for the probabilities

p̃i = fn,i(xπ(1), . . . ,xπ(n)), (6)

we should have
p̃0 = p0 and p̃i = pπ(i) for i > 0. (7)

Third natural requirement: consistency. The values (4) are based on the assump-
tion that all n+1 options are possible. If it turns out that only options i1, . . . , ik are
possible, then we can compute the new probabilities in two different ways:



4 Dinh Tuan Nguyen et al.

• we can start from scratch and compute the new probabilities by using the same
functions, i.e., compute the values

p̃i j = fk,i j(xi1 , . . . ,xik), (8)

• we can also take into account that the new probabilities are simply conditional
probabilities under the condition that only options i1, . . . , ik are possible; in this
case, we have:

p̃i j =
pi j

pi1 + . . .+ pik
. (9)

These are two estimates for the same quantity, so they should coincide.

Fourth natural requirement: non-triviality. We are talking about situations in
which there is a possibility that an object is not in any of the given classes. It is
therefore reasonable to require that the corresponding probability p0 should always
be positive: p0 > 0.

Our first result. It turns out that these four requirements determine the following
softmax-type form of the probabilities.

Definition 1.

• By a probabilistic formula, we mean a set of continuous functions fn,i(x1, . . . ,xn)
from tuples of real numbers into the interval [0,1], n = 1,2, . . ., i = 0,1, . . . ,n.

• We say that a probabilistic formula is permutation-invariant if for every n and for
every permutation π : {1, . . . ,n} 7→ {1, . . . ,n}, the equality (7) is satisfied.

• We say that a probability formula is consistent if for every n and for every subset
{i1, . . . , ik} ⊂ {1, . . . ,n}, the expressions (8) and (9) coincide for every i.

• We say that a probabilistic formula is non-trivial if for every tuples x1, . . . ,xn, we
have fn,0(x1, . . . ,xn)> 0.

Proposition 1.

• Every permutation-invariant consistent non-trivial probability formula has the
following form, for some continuous function f (x)≥ 0:

fn,0(x1, . . . ,xn) =
1

1+ f (x1)+ . . .+ f (xn)
; (10)

fn,i(x1, . . . ,xn) =
f (xi)

1+ f (x1)+ . . .+ f (xn)
when i > 0. (11)

• Vice versa, for every non-negative continuous function f (x), the formulas (10)
and (11) define a permutation-invariant consistent non-trivial probability for-
mula.

Comment. Thus, the only reasonable generalization of the general softmax (1) is
obtained when add 1 to the denominator.



How to Generalize Softmax 5

Proof. It is easy to show that the probability formula (10)–(11) is permutation-
invariant, consistent, and non-trivial. Thus, to complete the proof, it is sufficient to
prove that any permutation-invariant consistent non-trivial probability formula has
the form (10)–(11). Indeed, let us assume that we have such a probability formula
fn,i(x1, . . . ,xn). Let us prove that it has the desired form.

Let us first consider the consistency property for the subset {i}. For this subset,
the equality between the expressions (8) and (9) takes, for i = 0, the following form:

f1,0(xi)

f1,0(xi)+ f1,i(xi)
=

fn,0(x1, . . . ,xn)

fn,0(x1, . . . ,xn)+ fn,i(x1, . . . ,xn)
. (12)

If we reverse both sides of this equality, and then subtract 1 from both sides, we will
then conclude that:

Ai(xi) =
fn,i(x1, . . . ,xn)

fn,0(x1, . . . ,xn)
, (13

where we denoted

Ai(xi)
def
=

f1,i(xi)

f1,0(xi)
. (14)

Thus, for all i > 0, we have

fn,i(x1, . . . ,xn) = Ai(xi) · fn,0(x1, . . . ,xn), (15)

If we consider a permutation that swaps i and j, then, from permutation-invariance,
we conclude that Ai(xi) = A j(xi) for all i and j. In other words, all n functions
A1(x), . . . ,An(x) are the same function. Let us denote this function by f (x). Then,
the formula (15) takes a simplified form

fn,i(x1, . . . ,xn) = f (xi) · fn,0(x1, . . . ,xn). (16)

Substituting these expressions into the formula (5), we conclude that

fn,0(x1, . . . ,xn)+ f (x1) · fn,0(x1, . . . ,xn)+ . . .= 1, (18)

i.e., that
fn,0(x1, . . . ,xn) · (1+ f (x1)+ . . .+ f (xn)) = 1. (19)

Thus, for fn,0(x1, . . . ,xn), we have exactly the expression (10). If we substitute the
expression (10) into the formula (16), then for fn,i(x1, . . . ,xn), we get exactly the
formula (11). The proposition is proven.

3 Alternative approach

Main idea behind this approach: let us use Bayes formula. Alternatively, let us
use the usual way to update probabilities – the Bayes formula; see, e.g., [3]. In this



6 Dinh Tuan Nguyen et al.

formula, we consider the situation in which we have several mutually inconsistent
hypotheses H0,H1, . . . ,Hn with prior probabilities p0(Hi) for which ∑ p0(Hi) = 1.
For each possible outcome E and for each hypothesis Hi, let us denote, by p(E |Hi),
the probability with which the outcome E happens if this hypothesis is true. Then, if
we observe one of the possible outcomes E0, the probabilities of different hypothe-
ses change:

• for hypotheses in which E0 is highly probable the probabilities of these hypothe-
ses increases, while

• for hypotheses for which the outcome E0 was highly improbable the probabilities
of these hypotheses decreases.

The resulting new probabilities pi of different hypotheses Hi are described by the
following Bayes formula:

pi =
p(E0 |Hi) · p0(Hi)

∑
j

p(E0 |Hi) · p0(Hi)
. (20)

Let us apply the Bayes formula to our case. Let us see how we can apply the
Bayes formula to the case when an object either belongs to one of the n classes, or
does not belong to any of these classes. In this case, we have n+1 possible options,
i.e., for each object, we have n+1 hypotheses:

• the hypotheses H1, . . . ,Hn that the object belongs to one of the n classes, and
• the hypothesis H0 that the object does not belong to any of the given classes.

Let p0(H0) denote the prior probability that the object does not belong to
any of the given classes. What about p0(Hi)? In many practical situations, we
have no reason to believe that one of the classes is more probable. So, common
sense implies that we should assign equal prior probability to all these n events:
p0(H1) = . . . = p0(Hn). This argument is known as Laplace Indeterminacy Prin-
ciple; see, e.g., [2]. Since the sum of all the probabilities should be equal to 1, we
conclude that p0(H0)+n · p0(H1) = 1, so

p0(H1) = . . .= p0(Hn) =
1− p0(H0)

n
. (21)

In this case, for each hypothesis Hi, 1 ≤ i ≤ n, an outcome E0 is characterized
by the value xi generated by the part of the neural network that corresponds to the
i-th class. We do not know how the probability p(E0 |Hi) depends on the value xi,
but we know that the larger xi, the more probable it is that the object belongs to
the i-th class. In other words, we know that p(E0 |Hi) = Fi(xi) for some increasing
function Fi(xi). Again, we do not have any reason to believe that for some x and
for some classes i ̸= j, the value Fi(x) is larger than or smaller than Fj(x). Thus,
it makes sense to assume that for each x, the corresponding values are the same:
F1(x) = . . .= Fn(x). So, for each i, we have p(E0 |Hi) = F1(xi).



How to Generalize Softmax 7

Under the hypothesis H0 that the object does not belong to any of the given
classes, we do not have any reason to believe that some combinations of values
xi will be more probable or less probable than others. So, in this case, we have
p(E0 |H0) = c for some constant c. Now, we have expressions for prior probabilities
and we have expressions for conditional probabilities. Substituting these expressions
into the Bayes formula, we conclude that

p0 =
c

c+
n
∑
j=1

F1(x j) · p0(H1)
and pi =

F1(xi) · p0(H1)

c+
n
∑
j=1

F1(x j) · p0(H1)
. (22)

If we divide both the numerator and the denominator of this formula by c, then we
get the following expressions:

p0 =
1

1+
n
∑
j=1

f (x j)
and pi =

f (xi)

1+
n
∑
j=1

f (x j)
, (23)

where we denoted

f (x) def
=

F1(x) · p0(H1)

p0(H0)
. (24)

This is exactly the formulas (10)–(11) that we wanted to derive.

Comment. In our derivation, we assumed that we have no information about the
corresponding probabilities, and this is indeed often the case. However, in principle,
we can determine these probabilities from the observations and experiments:

• The prior probabilities p0(H1), . . . , p0(Hn) are the frequencies with which objects
of the corresponding class occur in the sample.

• The prior probability p0(H0) is the frequency with which we encounter objects
that do not belong to any of the given classes.

Similarly, the conditional probability p(xi |Hi) can be determined, crudely speak-
ing, as the proportion, among all objects of the class i, of the objects for which the
i-th neural sub-network returns the value xi. To be more precise, since xi is a con-
tinuous variable, the probably of each value is 0, so we should consider probability
density:

• for some small ε > 0, we compute the proportion p([xi,xi+ε] |Hi), among all the
objects of class i, the ones for which the i-th neural sub-network returns a value
from the interval [xi,xi + ε],

• and then we divide this proportion by the width ε of this interval:

p(xi |Hi) =
p([xi,xi + ε] |Hi)

ε
. (26)

In this case, the Bayes formula enables us to use this additional information about
the situation. Thus, this formula will give us more accurate estimates of the desired



8 Dinh Tuan Nguyen et al.

probabilities pi than the formulas (10)–(11) – formulas that do not use this informa-
tion.

4 From the first result to the final formula

Which function f (x) shall we use? Our objective is to generalize softmax, i.e., to
make sure that when we are absolutely sure that the object belongs to one of the
given classes, then we will get exactly the softmax formula (1)–(2). The corre-
sponding probability can be obtained, from our formula (10)–(11), as the conditional
probability

p̃i =
pi

p1 + . . .+ pn
=

fn,i(x1, . . . ,xn)

fn,1(x1, . . . ,xn)+ . . .+ fn,n(x1, . . . ,xn)
. (27)

Definition 2. We say that a probability formula generalizes softmax if for every tuple
x1, . . . ,xn the expression (21) coincides with the softmax expression (1).

Proposition 2. For every permutation-invariant consistent non-trivial probability
formula (10)− (11), the following two conditions are equivalent to each other:

• the probability formula generalizes softmax, and
• the function f (x) has the form f (x) = c · exp(α . . .x) for some c > 0.

Comment. If we divide both numerator and denominator of the corresponding ex-
pression (10) –(11) by c, and denote C def

= 1/c, we conclude that in general, the
probability formula that generalizes softmax has the following form:

p0 =
C

C+ exp(α · x1)+ . . .+ exp(α · xn)
; (28)

pi =
exp(α · xi)

C+ exp(α · x1)+ . . .+ exp(α · xn)
. (29)

In other words, this formula differs from the standard softmax formula by adding a
positive constant C to the denominator.

In the limit, when this constant C tends to 0, our new formulas turns into the
original softmax (1).

Proof. It is easy to check that for f (x) = c · exp(α . . .x), the expressions (1) and
(21) are indeed identical: to see that, it is sufficient to divide both numerator and
denominator of the formula (27) by c.

Vice versa, let us assume that these probabilities are always equal. Since, for
every i ̸= j, the probabilities computed by formulas (1) and (21) and (22) are equal,
we can conclude that if we use each of the formulas (1) and (27), we will get the
exact same value of the ratio pi/p j. If we implicitly find this ratio by using the



How to Generalize Softmax 9

formulas (1) and (27), then, by equating the two resulting expressions for pi/p j, we
get the following equality:

f (xi)

f (x j)
=

exp(α · xi)

exp(α · x j)
. (30)

If we divide both sides of this equality by exp(α · xi) and multiply both sides if the
resulting equality by f (x j), we will get the following equality:

f (xi)

exp(α · xi)
=

f (x j)

exp(α · x j)
. (31)

This is true for all possible values xi and x j. Thus, the ratio

f (x)
exp(α · x)

(32)

has the same value for all x – i.e., this ratio is a constant. If we denote this constant
by c, then we conclude that for all x, we indeed have f (x) = c · exp(α · x).

The proposition is proven.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395 (Center for Collective Impact in Earthquake Science C-CIES), and by the
AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research, De-
velopment and Innovation Office (NRDI), by the Institute for Risk and Reliability,
Leibniz Universitaet Hannover, Germany, and by the European Union under the
project ROBOPROX (No. CZ.02.01.01/00/22 008/0004590).

References

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Mas-
sachusetts, 2016.

2. E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of Science, Cambridge Uni-
versity Press, Cambridge, UK, 2003.

3. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman
and Hall/CRC, Boca Raton, Florida, 2011.


