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Abstract

This chapter provides theoretical explanations for selecting best ma-
chine learning technique for decision making. Mostly, it concentrates on
the theoretical explanation of why empirically, ReLU activation functions
works the best. There are many possible criteria for selecting such a func-
tion: we may look for the fastest-to-compute function, we may look for
the function that is the most interpretable, etc. Somewhat unexpectedly,
all these criteria lead to the exact same conclusion – that under some
reasonable assumption, ReLU is the best. After describing these results,
we explain why all these criteria lead to the same selection. We finish
this chapter with an overview of how similar techniques can help with
explaining other empirically successful features of deep learning – and of
data processing in general.

1 Machine learning techniques: empirical suc-
cesses and related theoretical challenges

What is deep learning – an empirically successful machine learning
technique. Recent decades have shown spectacular applications of machine
learning techniques, especially techniques of deep neural networks; see, e.g.,
[30].

Deep neural networks are particularly successful. In this technique, data
processing is performed by neurons, devices that take several inputs x1, . . . , xn

and compute the value s(w0+w1 ·x1+. . .+wn ·xn), where wi are numbers called
weights and s(z) is a function known as activation function. In deep learning,
the most widely used activation function is s(z) = max(0, z), which is known as
the Rectified Linear Unit (ReLU, for short).
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Some neurons take, as inputs, the inputs to the data processing problem.
Other neurons use, as inputs, the output signals of other neurons, etc. The out-
put signal of one of the neurons is then returned as the result of data processing.

In the past, researchers considered what is called 3-layer neural networks,
where:

� first, all the input signals are processed by several neurons in the so-called
hidden layer, and

� then the output – linear – neuron transforms the outputs of hidden-layer
neurons into the result of data processing.

However, lately, it turned out that neural networks with more layers – called
deep – provide much better results that traditional “shallow” neural networks.

Each empirical success is a theoretical challenge. Some of these successes
of deep learning come from theoretical analysis, but most of them are largely
empirical.

From the theoretical viewpoint, every time we have a successful heuristic for
which no theoretical explanation is known, we have a challenge: to explain this
empirical success.

But why would anyone care about theory if we already have empir-
ical successes? One may wonder: why should anyone case about theoretical
explanations if we already have empirical successes? Theory is good when it
leads to new results – but if results are already there, why care about explain-
ing this success? If aspirin successfully cures a headache, why would anyone be
interested in how exactly it works – which was, by the way, a mystery for many
decades.

There are two answers to this question. First, when empirically, e.g., some
activation function works better than others, this does not necessarily mean
that this is indeed the best possible function: empirically, we can test only
finitely many functions, and there are infinitely many of them. So, without a
theoretical analysis, we cannot be sure that one of the functions that we did not
try is actually better than the one we are using now. And maybe a theoretical
analysis will find out that the empirically best function is not actually optimal
– and this analysis will help us find a better function.

Second, theoretical results often apply not only to a specific application,
but also to many other applications – including those that we have not yet
empirically tried. This can provide us a guidance to solving other problems.

What we do in this chapter. In this chapter, we provide possible theoretical
explanations for several empirically successful features of deep learning.

To come up with these explanations, we will recall what people want from
machine learning – especially when it is applied to decision making. For each of
the resulting features, we will formulate the corresponding objective, and then
we show how to solve the corresponding optimization problem.
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We will mostly concentrated on the problem of selecting the best activa-
tion function – i.e., mostly, on explaining why empirically, the ReLU activation
function s(x) = max(0, z) is the best.

Our results are somewhat unexpected – but we explain this unex-
pected feature as well. Our analysis has led to some unexpected results. Let
us explain in what sense our results are unexpected.

Intuitively, when there are several objectives, one expects a trade-off. For
example, for optimization algorithms, there is usually a trade-off between the
quality of the result and the computation time: if we want better results, we
need to spend more computation time and, vice versa, if we want to decrease
computation time, the quality of the results decreases.

In contrast, in our case, all reasonable criteria lead to the exact same con-
clusion – that ReLU is the best. This sounds strange – and explaining this
was yet another challenge for us – but we have found an explanation for this
phenomenon. This explanation will be provided as well.

Finally, at the end of the paper, we will briefly explain how these results can
be (and often were) extended to explaining other empirically successful features
of deep learning.

Comment. In this chapter, we cover many different explanations. Many of them
are based on complex (and lengthy) mathematical proofs. We realize that it is
not realistically possible to present all these proof in this chapter – if we did
that, we would get a while book, not a chapter. So, in this chapter, we will only
provide a few shorter proofs. For most other results, we will describe the main
ideas behind the corresponding proofs – and provide links to papers where these
proofs are given in detail.

2 What do we expect from a machine learning
application to decision making?

Let us first recall what we want from such an application. In general, in a
decision making problem, we start with a real-world situation, and we want
to process this information to come up with a decision that will be, in some
reasonable sense, optimal – or at least adequate – in this situation. Usually,
real-life decision making comes in two steps:

� first, we try to understand the situation as accurately as possible, and

� then, based on this understanding, we make a decision.

For example, to make a medical decision, a doctor usually:

� first orders some tests to determine what exactly is the problem, and

� then, based on the resulting diagnosis and on the general state of the
patient, selects the best treatment.
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Therefore, the tools that we use to make such decisions – in particular, AI/ML
tools – must allow us:

� to provide an efficient and adequate description of the real-world situa-
tion and processing of the corresponding information: to reflect the actual
physical dependence, not to lose any information, not to waste time pro-
cessing irrelevant information, and to make sure that the resulting models
adequately describe real-life constraints – both constraints on individual
values and relations between pairs of values;

� to provide an efficient way to make a decision, and

� to make sure that the resulting decisions are understandable to us, human
users.

In the following sections, we describe each of these criteria in more detail, and
we show that for each of these criteria, ReLU is the best activation function.

3 Which activation functions provide the most
adequate description of the physical world

Which properties of the physical world are we talking about. Different
real-world processes follow different laws. However, there are some features
which are common to many such processes.

The world is described by differential equations. Starting with the suc-
cesses of Newtonian mechanics, physical processes are described by systems of
differential equations. The fact that the world is described by differential equa-
tions means that every change is gradual, it consists of several stages on each
of which some small changes are performed – and the resulting big change is a
composition of such smaller changes.

We also need constraints. Also, in many cases, in addition to equations, we
also have additional inequalities that a physical system must satisfy. For exam-
ple, differential equations of Newtonian physics remain valid when we change
the order of time, i.e., replace time t with −t. However, from the practical
viewpoint, this makes no sense.

Indeed, if I accidentally drop a cup and it breaks, I may be not happy about
it, but this is in perfect accordance with physics. However, a time-reversed
process, when the parts of the cup get together and form the original whole
cup, does not make any physical sense. To avoid such non-physical processes,
we need to impose a restriction from the Second Law of Thermodynamics: that
the entropy at each moment of time should be greater than or equal to the
entropies in the previous moments of time. Similar inequalities are needed in
many other situations.

Which activations functions best capture the corresponding proper-
ties: composition property and inequalities property. It turns out that
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for capturing both composition property – corresponding to differential equa-
tions – and inequality property, the most adequate activation function is ReLU.
Let us show it for each of these two properties.

ReLU is most adequate with respect to composition property. How
can we use the fact that real dynamics usually comes as a composition of a
large number of small steps? A similar fact is used in statistics; see, e.g., [70].
Namely, there is usually a lot of randomness and noise in many physical pro-
cesses. Because of this noise, measurement results are, in general, different from
the actual (unknown) value of the corresponding physical quantity. Usually,
what we observe is a joint effect of many small independent random sources.
If we add two independent random variables x and y of this type – each of
which is a sum of many small independent random sources – then their sum
z is also a sum of many small independent random variables. So, to have a
good first approximation to such real-life random noises, it makes sense to find
a few-parametric family of distributions for which the sum of two independent
random variables from this family will also have a distribution from this family.
It is known that under some reasonable conditions (such as scale- and shift-
invariance), the smallest such family is the 2-parametric family of all possible
normal (Gaussian) distributions. And indeed, under some natural conditions,
the sum of many independent small random variables tends to normal distri-
bution when the number of variables increases. This is known as the Central
Limit Theorem; see, e.g., [70].

It makes sense to apply a similar approach to our case. In our case, each
transformation is a composition of many close-to-identity transformations. In
general, if we have transformations f(x) and g(x) each of which is a composition
of many close-to-identity transformations, then their composition f(g(x)) is
also a composition of many close-to-identity transformations. So, to have a
good first approximation to such real-life transformations, it makes sense to
find a few-parametric family of transformations for which the composition of two
transformations from this family will also be a transformation from this family.
In this case, it is possible to have a 0-parametric family, i.e., to have a family
consisting of a single function f(x) – with the property that the composition of
this function with itself is equal to this same function: f(f(x)) = f(x).

In many physical situations, the order between the value makes physical
sense, so it is reasonable to restrict our themselves to functions that preserve
this order, i.e., for which x ≤ y implies that f(x) ≤ f(y). It turns out that all the
non-identity functions f(x) which are monotonic and for which f(f(x)) = f(x)
are of the following three types: f(x) = max(a, x), f(x) = min(a, x), and
f(x) = max(a,min(b, x)).

The first two functions are equivalent to ReLU in the sense that each net-
work consisting of such neurons is equivalent to a ReLU network with the same
number of neurons. Indeed, e.g., max(a, x) = max(0, x−a)+a. Since in a neural
network, we already have linear transformations between any two applications
of a nonlinear function, we can just include x 7→ x − a and y 7→ y + a in these
transformations. Similarly, min(a, x) = a −max(0, a − x). The third function
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can be represented by two ReLU units corresponding to min and max; see [7]
for technical details.

ReLU is most adequate with respect to inequalities. Suppose that we
have a physical inequality x ≥ a. To make related computations adequate,
we need to make sure that on each computational step, our estimate for the
quantity x satisfies this inequality. Computations deal with approximate data,
algorithms are often approximate. So, we may end up with an approximate
value that is somewhat smaller than the desired threshold a. In this case, we
need to correct this estimate. For this purpose, we need to have a correction
function f(x) that will keep values x ≥ a intact, but that will transform values
smaller than a into physically possible values – i.e., into values ≥ a.

In many physical situations, the order between the values makes physical
sense, so we want this transformation to preserve this order: if x ≤ y then
we should have f(x) ≤ f(y). It turns out (see, e.g., [20]) that the only
correction function that satisfies this monotonicity property is the function
f(x) = max(a, x), i.e., a function which – as we have shown – is equivalent
to ReLU.

4 Which activation functions do not lose infor-
mation and do not process irrelevant informa-
tion

As planned, we will discuss which activation functions best preserve constraints
on individual variables, and which best preserve relations between variables.

4.1 Which activation functions best preserve constraints
on individual variables

To analyze which activation functions do not lose information and do not process
irrelevant information, let us first consider this problem locally, on the level of
a single input z to the activation function s(z). In other words, let us analyze
when the transformation from z to y = s(z) does not lose information and, at
the same time, does not add irrelevant information. The details of this analysis
can be found in [21].

To provide this analysis, let us take into account that usually, the inputs
come from measurements, and measurements are never absolutely accurate,
there is always some measurement uncertainty. For example, if we measure dis-
tance with accuracy 1 cm, then, in effect, possible values of the result are 0 cm,
1 cm, 2 cm, etc. – every other reading of a measuring instrument is indistin-
guishable from one of these values. In general, if we denote the measurement
accuracy by h, this means, in effect, that we only consider values proportional
to h, i.e., values 0, h, 2h, etc. For such a measurement, on an interval of width
w, we have w/h distinguishable values.
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If after the transformation z 7→ s(z), we have fewer values, this means that
some previously distinguishable values will stop being distinguishable – i.e., we
will lose some information.

Similarly, if after the transformation, we will have more values than before,
this means that some values that are not distinguishable based on the available
information are now claimed to be distinguishable. In other words, in this case,
we add some distinction that is not related to the available information – and
this is exactly what we wanted to avoid, time-wasting processing of irrelevant
information.

So, the only case when we do not lose any information and, at the same time,
do not waste time processing irrelevant information, is when on each interval,
the number of distinguishable values does not change after this transformation.
Since the number of distinguishable values is equal to the interval width divided
by the accuracy h, this means that the transformation must preserve the interval
width.

Of course, measurement accuracy depends on the measured value: e.g., when
we measure distances in a small room, we can easily reach a 1 cm accuracy, while
reaching this accuracy for a kilometer distance requires much more accurate
measuring instruments. Thus, the above conclusion is only applicable to a small
vicinity of each value, on which we can safely assume that the accuracy remain
the same for all the values from this interval. For a narrow interval [z, z+w], a
smooth function is usually monotonic – unless we happen to encounter one of the
rare points where the derivative s′(z) is equal to 0. For a monotonic function,
values from the interval [z, z +w] are transformed into values from the interval
with endpoints s(z) and s(z + w). Thus, the width of the transformed interval
is equal to |s(z+w)− s(z)|. For small w, we have s(z+w) ≈ s(z)+w · s′(z), so
the width of transformed interval is equal to w · |s′(z)|. Thus the requirement
that the width should not change after the transformation means that we should
have w · |s′(z)| = w, i.e., |s′(z)| = 1. Thus, for each z, we should have either
s′(z) = 1 or s′(z) = −1. Hence, the activation function s(z) should consist of
parts on which s′(z) = 1 – and thus, s(z) = z+const, and parts with s′(z) = −1
– and thus, s(z) = −z + const.

We cannot have just one part – because in this case, the function s(z) will
be linear, and the resulting neural network will only be able to compute linear
function, while many real-life dependencies are nonlinear. Thus, we must have
at least two parts. The simplest case is when we have exactly two parts, e.g.,
when we have s(z) = |z|. One can show that every such activation function
is equivalent to ReLU – in the same sense as before, that every function com-
putable by a neural network with such an activation function can be computed
by a ReLU-based network with the same number of neurons – and vice versa.
For example, for s(z) = |z|, ReLU can be described as 0.5 · (s(z) + z). So, a
ReLU neuron can be simulated by a |z|-type neuron, with linear transformation
after this neuron.

Comment. We can formulate the same property in a more commonsense-type
form: if a is close to b, then s(a) should be close to s(b), and vice versa: if s(a)
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is close to s(b), then a should be close to b. It turns out that if we use fuzzy
logic (see, e.g., [12, 34, 60, 64, 65, 78]) to formalize this requirement, then we
get exactly the same property – that |s(a) − s(b)| = |a − b| when a and b are
close – which leads to the same conclusion [75].

4.2 Which activation functions best preserve relations be-
tween variables: scale-invariance

Even when we have a perfect representation of each input, we may still process
irrelevant information if there is a relation between the inputs, One such case is
the fact that while we want to process the values of physical quantities, what we
really process is their numerical values, and the numerical values change if we
change a measuring unit. For example, when we go from meters to centimeters,
all numerical values are multiplied by 100. In general, if we replace the original
unit by a new unit which is c > 0 times smaller, then all numerical values are
multiplied by c.

It therefore makes sense to require than the results of a neuron processing
should not depend on which units we use. If the neural network produces dif-
ferent results depending on what units we use, this means that this network
processes irrelevant information – namely, the information about what measur-
ing unit was used. So, if, in the original units, we had y = s(z), then in the new
units we should have Y = s(Z), where Y = c · y and Z = c · z are the values in
the new units.

Substituting the expressions for Y and Z into the formula Y = s(Z), we
conclude that c ·y = s(c ·x). Since y is equal to s(z), we conclude that s(c · z) =
c · s(z) for all z and for all c > 0. In particular, for any value x > 0, we can take

c = x, z = 1, and get s(x) = c+ · x, where we denoted c+
def
= s(1). Similarly, for

any value x < 0, we can take c = −x, z = −1, and get s(x) = c− · x, where we

denoted c−
def
= −s(−1).

Thus, the only activation function that satisfies this scaling-invariance prop-
erty is a piecewise-linear function of the above type – and we have already men-
tioned that all such functions are equivalent to ReLU; see, e.g., [39, 45, 46, 69].
This provides more explanation of why ReLU is so effective – it is the only ac-
tivation function that does not use the irrelevant information about measuring
units.

Comment. Selecting a different measuring unit is only one of the transformations
that changes the numerical values while keeping physics intact. In the following
text, we will list several other transformations of this type.

� For example, we can change the starting point from the original 0 value
to a new 0 value which is a units before. In this case, all numerical values
are shifted, from x to x+ a.

� To describe points in 3D space, we can use different coordinate systems. In
a different system, each point will be characterized by different numerical
values of its coordinates, but it will be the same point.

8



� Sometimes, there are also nonlinear transformations of this type.

5 Which activation functions provide the most
efficient data processing

Let us describe this objective in precise terms. While modern computers
are very fast, there are still many practical problems for which even faster
computations are needed. For example, at present, computer-based systems
reasonably accurately predict tomorrow’s weather – so accurately that days
when prediction was wrong are pretty rare. A few hours of computer time on a
high-performance computer – and a 24-hour prediction is ready.

These predictions work well when we have usual weather, they also work
reasonably well when we have storms and hurricanes. But there is one weather
phenomenon for which predictions are still not realistically possible: tornadoes.
Every year, tornadoes bring in a lot of damage and even loss of lives. So why
cannot we predict their behavior? In principle, tornadoes are an atmospheric
phenomena, they are described by the same Navier-Stokes equation as weather
– and indeed, we can, in principle, “predict” the tornado’s path. We placed
the word “predict” in quotes because tornadoes move and change much faster
than other meteorological phenomena: their change in 15 minutes is similar to
the daily change in normal weather. As a result, predicting where the tornado
will go in the next 15 minutes takes the same amount of computational effort as
predicting tomorrow’s weather – several hours on a high-performance computer.
For predicting tomorrow’s weather, such a prediction makes perfect sense, but
for a tornado, it is useless: the tornado will turn somewhere in 15 minutes
without waiting for our computations to end.

This is just one of the examples, there are many other examples of real-time
decision making where faster computations are desirable. From this viewpoint,
what we want is to be able to compute as fast as possible – and this means,
in particular, that we want to select an activation function that is as fast to
compute as possible.

So, from this viewpoint, we want to select an activation function s(z) that
is the fastest to compute.

Which activation function is the fastest to compute? In a computer,
the fastest operations are the ones that are directly hardware supported. In
most computers, the only directly hardware supported operations are arithmetic
operations: min, max, addition/subtraction, multiplication, and division. Also,
shifts – which are equivalent to multiplying by a power of 2 – are easy to
compute.

Whatever we want the computer to compute is actually implemented as a
sequence of such elementary operations. For example, when we ask the com-
puter to compute exp(x), it actually computes the polynomial approximation
to exp(x) – that is equal to the sum of the first few terms in this function’s
Taylor expansion.
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Out of these operations, the fastest are min and max, since these operations
do not involve much data processing: they simply compare the two numbers
and select one of them. Next fastest are addition/subtraction. Multiplication
includes several additions – just like when we do it by hand – so it is somewhat
slower. Similarly, division contains several multiplications – also similarly to
how we do it by hand – so it is even slower.

From this viewpoint, the fastest-to-compute activation function s(z) is the
one that uses only min or max – of the input z and possible some constant c.
The easiest-to-implement constant is usually 0, so we end up with max(0, z)
and min(0, z). The first of these expressions is exactly ReLU, the second is
equivalent to ReLU – if we take into account that between several applica-
tion of the activation function, there are linear transformations. In our case,
max(0, z) = −min(0,−z). So, if we first apply a linear operation z 7→ −z,
then apply the min(0, z) activation function, and then again change the sign,
we get exactly ReLU. Thus, whatever we can compute with ReLU neurons can
be computed with the exact same number of neurons with activation function
min(0, z). In other words, ReLU (and operations equivalent to ReLU) is the
best.

Comments.

� For technical details, see [48, 77].

� It is worth mentioning that selecting the simplest possible algorithm not
only leads to the fastest computations, it has an additional advantage:
namely, it has been proven that if we always select the simplest possible
model describing current observations, then eventually, we will converge
to the actual description of the physical world; see, e.g., [56].

� A related alternative explanation for ReLU comes from the arguments
presented in [38, 44]. It is based on the fact that data processing is, in
some sense, similar to chemical – or other – reactions: we combine data
points and get new results, just like we combine substances and get new
substances. From this viewpoint, it is desirable to simulate the fastest
possible chemical reactions. Most chemical reactions are well described
by equations of chemical kinetics, in which the reaction rate is propor-
tional to the product of the concentrations a, b, . . . of different substances,
e.g., to a · b if we have two substances. This law has a simple interpreta-
tion: molecules are randomly distributed in space, and the reaction rate
is proportional to the probability that molecules of two type happen to
be at the same location. However, for fast reactions – e.g., reactions on
the surface of a catalyst, where concentrations are high – molecules do
not need to find each other, they are all already close. In this case, each
molecule of a immediately starts reacting with a molecule of b – as long as
there are pairs of such molecules. Thus, the reaction rate is proportion to
the amount of such pairs, i.e., to min(a, b). Since fast chemical reactions
use the operation min(a, b), then the idea of simulating fast physical pro-
cesses leads to the use of this operation in data processing as well. The
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result of this operation can be equivalently described as a−max(0, a− b).
Thus, a network consisting of such operations is equivalent to a network
of ReLU neurons.

6 Which activation functions are most appro-
priate for decision making

Why ReLU is the most appropriate for decision making: our main
explanation. As we have mentioned, the ultimate goal of all data processing
is to make decisions, and ideally, to make optimal decisions, i.e., decisions that
minimize some objective function. In some practical situations, we want to
maximize the objective function f(x) – but from the mathematical viewpoint,

such problem cane be reduced to minimization of the objective function g(x)
def
=

−f(x).
In general, minimization is an NP-hard problem, but there is a class of

problems for which minimization is feasible – these are problems with convex
objective functions. It can be proved that convex functions are the largest of
such class – if we add at least one non-convex function and allow all possible
convex combinations, the minimization problem for this enlarged class becomes
NP-hard [33].

Convex minimization problems are ubiquitous in practice. So, to preserve
efficiency, it makes sense to select an activation function for which the neural
approximation to a convex dependence retains as many convexity properties as
possible. Thus, it is desirable to require that the activation function itself is
convex, and that every other convex function of one variable – that is approx-
imated by a linear combination of shifted and re-scaled activation functions –
should be represented as a convex combination as such functions.

The set S of all convex functions is itself convex – in the sense that a convex
combination c1 · f1(x) + . . . of convex functions is also convex. If the activation
function is in the interior of this set S, then its linear combinations will not cover
convex functions on the border of this set. So, the activation function must be
one of the extreme points of this set. According to calculus, a function y(x) is
convex if and only if its second derivative y′′(x) is everywhere non-negative. The
extreme points of this set are, thus, functions for which y′′(x) = 0 everywhere
except for one value x0. If we integrate this expression, we get a piece-wise
constant function y′(x), and if we integrate it again, we get a piece-wise linear
function with two linear parts – and we already know that from the viewpoint
of a neural network, all such functions are equivalent to ReLU. Thus, ReLU is
indeed the most appropriate for decision making; see [17] for details.

A related second explanation. The paper [17] also has a related alternative
explanation of why ReLU is effective in decision making. This explanation is
as follows. We want to select the most appropriate activation function from
the set S of all convex functions. In precise terms, we select some objective
functional J(s) that describes the appropriateness of each objective function s,
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and we want to select a function s for which this appropriateness J(s) attains
its largest possible value.

According to calculus, a function attains its maximum on a bounded domain
D at some point x if either all its partial derivatives at x are equal to 0 or this
value is located on the border of the domain. When the domain is small, the
probability that is contains one the few points x where all partial derivatives are
zeros is very small, so the maximum is almost always attained on the border.
We can apply the same argument to the function limited to the border – and
eventually conclude that the maximum is most probably obtained at the extreme
points of the domain D – e.g., if the domain is a polytope, maximum is most
probably obtained at one of its vertices.

In our case, the domain is the set of all convex functions, and we already know
that the extreme points of this domain are exactly piece-wise linear functions
equivalent to ReLU. Thus, we get another explanation of why empirically ReLU
is the most appropriate activation function for decision making.

Comment. An additional decision-related argument – provided in [22] – explains
why non-smooth activations functions such as ReLU work better while most
physical dependencies are smooth. This explanation is based on the fact that
the ultimate goal of science and engineering in general is to make decisions, and
decisions means that we switch from one option to another – i.e., decision is a
function that is not only not smooth, it is not even continuous. Not surprisingly,
to describe decisions, non-smooth functions are more appropriate than smooth
ones.

Specifically, [22] shows that the simplest rule of group decision making – the
majority rule – can be easily computed by a simple 2-ReLU-neuron network, no
matter how many participants n we have, while if we use neurons with smooth
activation functions, we will need exponentially many neurons.

7 Which activation functions lead to most un-
derstandable results?

One of the natural requirements is that the results of a neural network should be
as understandable as possible. Ideally, not only the results of the neural network
should be understandable, but also each step in the computations should be
understandable. In other words, the result s(w0 + w1 · x1 + . . . + wn · xn) of a
processing by each neuron should be understandable.

Understandable means, in particular, that this results should be logical, i.e.,
that we should be able to describe it in terms of the usual logical connectives
“and”, “or”, and “not”. Of course, if we are talking about decisions, after the
very first processing of a single neuron, we do not yet get the final decision, but
we may get some degree of confidence for or against some possible decisions.
From this viewpoint, it is reasonable to view the signals as values as such de-
grees – this is exactly what is done when we use a neural network to make a
classification decision.
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So, in our interpretation, the inputs to the corresponding “and”- and “or”-
operations should be not the usual binary truth values, but rather our degrees
of confidence. In other words, we need to extend the usual logical operations
from the set {0, 1} of binary truth values to a continuous domain – e.g., to
the interval [0, 1]. Such extensions are well-known and well-studied in expert
systems and fuzzy logic (see, e.g., [12, 34, 60, 64, 65, 78]). These operations
must satisfy some natural properties. For example, since A&B and B&A
mean the same thing, then for the corresponding “and”-operation f&(a, b), we
should have f&(a, b) = f&(b, a) for the extended operations. Similarly, since for
false statement A, the composite statement A&B is also clearly false, we should
have f&(0, b) = 0 for all b. Since for a true statement A, our degree of confidence
in the statement A&B is exactly the same as our degree of confidence in B, we
must have f&(1, b) = b for all b.

Similarly, for the “or”-operation, we should have f∨(a, b) = f∨(b, a) for all a
and b, and f∨(0, b) = b and f&(1, b) = 1 for all b. It turned out that the only
activations functions s(z) for which a single neuron can represent an “and”-
operation are the ones that are equivalent to ReLU s0(z) – in the same sense as
before, i.e., that for some coefficients ai, we have

s(z) = a0 + a1 · s0(a2 + a3 · z) + a4 · z

for all z. Similarly, the only activations functions s(z) for which a single neuron
can represent an “or”-operation are the ones that are equivalent to ReLU; see
[2] for proofs; see also [6, 8, 9].

From this viewpoint, ReLU indeed provides the maximum possible under-
standability.

8 How can we explain that different criteria lead
to the same family of activation functions?

Our explanation of this fact is that all reasonable optimality criteria are scale-
invariant, and for every scale-invariant optimality criterion, the optimal acti-
vation function is also scale-invariant – and thus, equivalent to ReLU. Let us
describe this explanation in detail.

8.1 What do we mean by optimal?

What is optimal: naive idea and its limitations. Our goal is describe what
is optimal. We therefore need to formally describe what we mean by optimal.

At first glance, this sounds straightforward: we select an objective function
J(x), and we try to find the alternative x for which this objective function at-
tains its largest possible value (or sometimes smallest possible value). However,
it is easy to see that this description does not cover all the cases when we talk
about optimality.

For example, if we are going to a conference that is not happening in a hotel,
then a reasonable idea is to look for a hotel which is the closest to the conference
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site. In this case, the distance is the objective function. But what if we have
two (or more) hotel at the same shortest distance? To choose between these
two hotels, we need to apply some other criterion: e.g., select the cheapest if
our funding is limited, or the one with the highest level of customer satisfaction
of the room rate is not an issue.

Similarly, if we have two algorithms whose worst-case computation time
is the same, we can choose, among them, the one with the smallest average
computation time.

If this additional criterion does not lead to a unique solution, we can use the
resulting non-uniqueness to optimize something else, etc. Let us see how we can
translate these limitations into a general definition of optimality.

Towards a formal definition. To define optimality, all we need is to be
able to decide, for all (or at least for some) pairs of alternatives which one is
better (or that they are both of the same quality). These conclusions should be
consistent: if a is better than b and b is better than c, then a should be better
than c.

Let us denote the statement “a is better than b” by a ≻ b, the statement “a
and b are of the same quality” by a ∼ b, and the statement “either a is better
then b or they are of the same quality” by a ⪰ b. Once we know the relation ⪰,
we can determine the other two relations we well:

� the relation a ∼ b means that a ⪰ b and b ⪰ a;

� the relation a ≻ b means that a ⪰ b and b ̸⪰ a.

In these terms, the above consistency means that if a ⪰ b and b ⪰ c, then a ⪰ c.
We also always have a ⪰ a. In mathematics, such relations are known as

pre-order relations.

Comment. Partial orders are a particular cases of pre-orders that satisfy an
additional condition of anti-symmetry: if a ⪯ b and b ⪯ a, then a = b.

Towards a formal definition (cont-d). We should also require that there is
only one alternative that is optimal with respect to this criterion: otherwise, as
we have just mentioned, the current criterion would not be final: we could use
the resulting non-uniqueness to optimize something else.

So, we arrive at the following definition.

Definition 1. Let A be a set. Its elements will be called alternatives.

� By an optimality criterion, we mean a transitive (pre-order) relation ⪰ on
the set A.

� We say that an alternative aopt is optimal if aopt ⪰ a for all a ∈ A.

� We say that the optimality criterion is final if there is exactly one optimal
alternative.
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8.2 Symmetries and invariances: a general reminder

What are symmetries. From the commonsense viewpoint, when can we make
a prediction? If we encounter a completely new situations, it is very difficult
to predict what will happen. But if we remember what happened in a similar
situation(s) in the past, it is natural to conclude that a similar result will happen
now.

If in the past, a person ate peanuts and got allergic reaction, it is natural to
expect that if this person eats peanuts again, he/she will get allergic again. If
we drop a ball and it starts falling down with an acceleration of 9.81 m/sec2,
then we expect the same thing to happen at a future date in a different Earth
location, maybe at a different orientation of the ball.

If we see that Ohm’s law is valid in Denmark (where it was originally dis-
covered), and in many other countries, we conclude that it is valid everywhere.

The important word here is “similar”. It means that there are some trans-
formation that do not affect the results. For the ball drop, these transformation
included shifts in time and space and rotations. In other cases, there may be
other transformations: e.g., changing the signs of all electric charges from plus
to minus and vice versa, making a smaller-size copy of a plane to test its aero-
dynamic properties, etc.

In physics, transformations that preserve some physical properties are called
invariance or symmetries. Symmetries are one of the main tools in physics; see,
e.g., [26, 72].

Mathematical comment. If a transformation from A to B preserves some prop-
erties, then naturally an inverse transformation also preserves the corresponding
properties. For example, if, in general, nothing changes when we shift an object
1 m to the right, this implies that nothing changes when we shift the object
back, 1 m to the left.

Similarly, in nothing changes when we shift an object 1 m to the right,
and nothing changes when we rotate it 90 degrees, then nothing changes when
we first shift and then rotate, i.e., in mathematical terms, when we apply a
superposition (also known as composition) of these two transformations.

Thus, the set of all transformation should include, for two transformations
f(x) and g(x), the inverse f−1(x) and the composition f(g(x)). Sets with this
property are known as transformation groups.

Comment. It is worth mentioning that composition is when the output of a
function – in the above example, z = g(x) – serves as input to another function
– in the above example, y = f(z). This is what happens when we perform
several computational procedures one after another. This is also what happens
in a neural networks (in particular, in a deep neural network), where outputs of
some neurons serve as inputs to other neurons.

How are symmetries related to optimality? By definition, invariances
do not change important properties of the situation. Thus, it makes sense to
conclude that if a is better than (or of the same quality as) b, then after a
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symmetry f : A 7→ A, we will still have f(a) ⪰ f(b). Thus, we arrive at the
following definition.

Definition 2.

� Let f : A 7→ A be a 1-to-1 mapping. We say that an optimality criterion
⪰ is f -invariant if for every pairs a and b, we have a ⪰ b if and only if
f(a) ⪰ f(b).

� Let F be a family of 1-1 functions from the set A to itself. We say that
an optimality criterion ⪰ is F -invariant if its f -invariant for all f ∈ F .

We are almost ready to formulate our result. To do that, we need to formulate
one more definition.

Definition 3.

� Let f : A 7→ A be a 1-to-1 mapping. We say that an alternative a ∈ A is
f -invariant if f(a) = a.

� Let F be a family of 1-1 functions from the set A to itself. We say that
an alternative a is F -invariant if its f -invariant for all f ∈ F .

Proposition. [69] For every final F -invariant optimality criterion, the optimal
alternative is also F -invariant.
Proof of the Proposition. By definition of the final optimality criterion,
there exists the optimal alternative aopt, i.e., the alternative for which aopt ⪰ a
for all a ∈ A. In particular, for every f ∈ F , we have aopt ⪰ f−1(a).

Since the optimality criterion ⪰ is F -invariant, from aopt ⪰ f−1(a), we can
conclude that f(aopt) ⪰ f(f−1(a)). Here, by definition of the inverse function,
f(f−1(a)) = a. Thus, we have f(aopt) ⪰ a for all a ∈ A.

By definition of the optimal alternative, this means that the alternative
f(aopt) is optimal. However, since the optimality criterion is final, there exists
only one optimal alternative. Thus, indeed, f(aopt) = aopt for all f ∈ F , i.e.,
indeed, the optimal alternative is F -invariant. The proposition is proven.

8.3 The resulting explanation

In our case, it makes sense to require that the optimality criterion is invariant
with respect to scaling x 7→ λ · x: this may be computational simplicity, this
may be interpretability, all of them should not change if we use another unit for
measuring inputs. In this case, due to the above Proposition, the optimal acti-
vation function should also be scale-invariant, and we have already mentioned
that the only scale-invariant activation function is ReLU.
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9 Other empirically successful activation func-
tions can be similarly explained: in brief

While ReLU activation functions are, in general, the best, other activation func-
tions are also effectively used in different specific situations. For many of these
non-ReLU activation functions, similar arguments explains their empirical suc-
cess:

� exponential linear units s(z) = α · (exp(β · z)− 1); their empirical success
can be explained by scaling [24];

� fractional-linear activation functions s(z) = (1 + b · z)/(c + d · z); their
empirical success can be explained by the fact that they are the easiest to
compute – after ReLU, of course [54];

� leaky ReLU functions, for which (z) = z for z > 0 and s(z) = α · z for
z < 0; their empirical success can be explained by scaling [24];

� polynomial and other activations functions; their success can also be ex-
plained by scaling [52];

� Rectified Power (RePU) activation functions s(z) = max(0, za); their suc-
cess can be explained by scale-invariance [14];

� sigmoid activation function s(z) = 1/(1 + exp(−z)) can be explained by
invariance with respect to nonlinear rescalings [39, 45, 71]; in particular,
in [71], this invariance is used to show that these functions are the least
sensitive to additive noise;

� spiking neural networks, with an activation function that is different from
0 only in a single point – their empirical success can be explained by
scale-invariance [11];

� squashing functions

s(z) =
1

λ · β
· ln 1 + exp(β · z − (a− λ/2))

1 + exp(β · z − (a+ λ/2))
;

their empirical success can also be explained by scale-invariance [23, 74];

� wavelet activation functions are explained in [53],

10 Other features of machine learning can be
similarly explained: a brief overview

10.1 What are these features

In the previous sections, we concentrated on the explanations of the empirical
success of different activation functions. In this section, we briefly overview
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results showing that other empirically successful features of machine learning
can be similarly explained. The explanations of the selections for these features
are listed in the order in which they need to be selected:

� first, we need to decide which machine learning tool to use, whether it is
neural networks or some other tool;

� if we select neural networks, we need to decide how many hidden layers
we should use, i.e., whether we want to use shallow (one-hidden-layer) or
deep (multiple-hidden-layers) neural networks;

� if we select a deep neural network, we need to decide on its architecture,
e.g., whether inputs to each layer should only come from the directly
preceding layer or from the other previous layers as well;

� we need to decide whether we need some data pre-processing – and which
exactly;

� to train the resulting neural network, we need to decide on the objective
function, on the initial values of the weights, and on the techniques for
optimizing the objective function – and we need to explain why these
selections are effective;

� if we repeat the procedure several times – to get more accurate results –
we need to decide on the best way to combine different results;

� finally, if our ultimate goal is to make a decision – as if often the case –
how can we make a decision based on the neural network results.

As we mentioned earlier, there is too much related material to fit into a single
paper. So, in this section, we only provide very brief overviews of different
explanations with links to details – and in some cases, we only provide the
links.

10.2 Which machine learning tool to use

In many applications, neural networks are, at present, the most effective machine
learning tool. But why?

A usual – somewhat naive explanation – is not very convincing. In
mathematical terms, as we have mentioned earlier, using a neural network to
represent a dependence means representing this dependence as a composition of
functions s(w0+w1 ·x1+. . .+wn ·xn) describing an individual neuron. For many
activation functions s(z), such compositions are universal approximations. This
is sometimes used as an explanation for why neural networks are empirically
successful.

However, we do not find this explanation very convincing: there are many
other families that have the universal approximation property, e.g., polynomials
of Fourier series. So why are neural networks more empirically successful than
other families?
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We have two general explanations for this, and one specific explanation – of
why neural networks are often more effective than Support Vector Machines.

Our first explanation: neural networks lead to fastest computations.
Our first explanation (see, e.g., [10, 42, 46, 51]) is related to the need for com-
putation speed. The faster the elementary computational steps, the faster the
overall computations – especially since many computations can be parallelized,
in which the overall time is equal to the longest time of each parallelized com-
putations. We previously mentioned that:

� the fastest computational operations are min and max, but they do not
lead to any new values, while

� the nest simplest are addition/subtraction and shift, while lead to generic
linear combinations.

So, the fastest-to-compute functions are linear functions.
However, if we only compute linear functions, we will only get linear func-

tions – since the composition of linear functions is also linear. And it is well
known that some real-life dependencies are nonlinear. Thus, in addition to lin-
ear computational units, we also need computational units computing nonlinear
functions. We also mentioned earlier that the more inputs, the longer compu-
tations. Thus, the fastest nonlinear units are the ones that compute a function
of one variable y = s(z).

Outputs of some computational units can serve as inputs to others. It makes
no sense to feed outputs of linear units into a new linear unit – the resulting
functions – composition of two linear functions – is also linear, so it could be
computed twice faster by a single linear unit instead of two. Similarly, it makes
no sense to feed the output y = s(z) of a nonlinear unit into a new nonlinear
unit t = s1(y): the resulting function – composition s1(s(z)) of two functions of
one variable – is also a function of one variable, so it could be computed twice
faster by a single nonlinear unit instead of two.

Thus, in the fastest-to-compute arrangement, the output z = w0 + w1 ·
x1 + . . . + wn · xn is fed to a nonlinear unit y − s(z), resulting in a signal
y = s(w0 + w1 · x1 + . . . + wn · xn) – which is exactly what a neuron does.
Thus, the need to make computations as fast as possible indeed leads to neural
networks.

Our second explanation – related to invariance. Another explanation
[16] is based on the fact that often, the representations of the input as n values
x1, . . . , xn is rather arbitrary. For example, we can represent a point in a 3-D
space by its coordinates, but we can select different coordinate systems. Usually,
we select linearly related coordinate systems, so that the transformation from
one coordinate system to another is linear. It therefore makes sense, in selecting
an approximating family, to select an optimality criterion that would not change
if we apply linear transformation to the inputs. It turns out that for every such
criterion, the optimal family indeed corresponds to neural networks.
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Why, in most cases, deep neural networks are more efficient than
Support Vector Machines (SVMs). At first glance, SVMs should be more
efficient. Indeed, in SVM, we approximate the empirical dependence by a linear
combination of several known functions. So, the match between each data point
and the approximating function is described by a linear equation – and efficient
algorithms are known for solving systems of such equations. In contrast, in neu-
ral networks, the approximating function depends nonlinearly on parameters.
So, to find these parameters, we need to solve a system of nonlinear equations
– and solving such systems is, in general, NP-hard.

An explanation is given in [13]: if all inputs were independent, then yes,
SVMs would be better. However, in practice, there are many strong depen-
dencies between the inputs – our Universe is not lawless, there are many laws
regulating it. As a result, the number of truly independent inputs is much
smaller than the overall number of inputs – and deep neural networks capture
this perfectly, since the number of neurons in the first layer is smaller than the
overall number of inputs; see a more detailed description in the next subsec-
tion. So, deep neural networks combine inputs into fewer ones and later deal
with these fewer inputs. This explained why they are often efficient than SVMs
– since SVMs do not take this dependence into account. A similar argument
explains why sparse techniques – techniques that take into account that the
desired outputs can be reasonably accurately described as function of only a
few of thhe inputs – are so efficient in practical signal and data processing.

Sometimes, other techniques are better. While in general, neural networks
are better, in many practical situations, other techniques work better. It is
therefore desirable to understand when other techniques are better – and why.

For example, it has been observed that neural networks do not always per-
form well – compared to other methods – in NP-hard problems. The following
explanation for this phenomenon was given in [36]. Current machine learning
technique is based on gradient descent, and gradient descent works well in prob-
lem in which the objective function has only one global minimum and no local
minima. When a problem has several local minima, then in situations when the
starting point is close to a local minimum, gradient descent will lead to this local
minimum. NP-hard problems usually have several local minima – otherwise, we
would be able to solve them by a straightforward gradient descent algorithm and
they would, therefore, be tractable. This explains why for NP-hard problems,
deep learning does not always work so well.

For NP-hard problems, many other machine learning techniques can be suc-
cessfully used. Specifically, for fuzzy-based learning techniques, the paper [47]
analyzes the question of when neural techniques are better and when fuzzy
techniques are better.

10.3 Deep or shallow neural networks?

Already for a single hidden layer, neural networks have a universal approxima-
tion property, so why do we need several layers? Why are deep networks – with
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several layers – more empirically successful?

Our first explanation: deep networks lead to more accurate results.
From the viewpoint of speed, shallow neural networks, with only one non-linear
layer, are the fastest, so this is what needs to bs used on very time-critical prob-
lems. However, in many other problems, it is also important to make accurate
predictions and reliable decisions. For this purpose, the neural networks should
approximate the actual dependence as accurately as possible.

For this, we need to have as many possible models as possible – within
the given budget of bits B. In general, by using B bits, we can describe 2B

different models. However, when we have K neurons in the same layer, then
any permutation of these neurons leads to the same model. Since there are

K!
def
= 1 · 2 · . . . · K possible permutations, the number of different models

decreases to 2B/K!. To increase the number of possible models – and, to make
them more accurate – a natural idea is to decrease the number of neurons K in
a single layer, i.e., to place these neurons in several layers; such networks, with
several nonplinear layers, are what is called deep [39, 46, 45].

Our second explanation: if we take into account that inputs come with
uncertainty, then only deep networks have universal approximation
property. A related explanation – also based on approximation accuracy –
is given in [4, 57] (based on [52]). This explanation takes into account that
whether we implement the activation function in hardware or in software, its
value is computed only approximately, with some approximation accuracy ε.
Within this accuracy, on the domain bounded by the smallest and largest values
of all the input, we can approximate s(z) with this accuracy, by a polynomial of
some degree n. Thus, if we use a single hidden layer – i.e., if we return a linear
combination to the neuron’s output as the computation result – then, in effect,
all we compute are polynomials of the same degree n, and the class of all such
polynomials does not have the universal approximation property. In contrast,
if we use several layers, we can get compositions of such polynomials – which
can be of degrees n2, n3, etc.

This result also shows that to get the universal approximation property
in this realistic case – when we take into account that computations are not
perfectly accurate – we cannot limit ourselves to any fixed number of layers
– such a limitation will limit the power of the corresponding polynomials and
thus, prevent such networks from being universal approximators.

Why sometimes shallow neural networks work better. While in general,
deep learning is more effective, sometimes, more traditional – shallow – neural
networks, with only one hidden layer, work better. It is therefore desirable to
be able to predict when shallow networks will work.

In some cases, the problem is so time-critical that at this moments, we need
to use the fastest possible computational device to get the result – and, as we
have mentioned earlier, shallow neural networks are the fastest. Sometimes,
however, shallow networks work better even if we have extra time. So why is it
so, and how can we predict when shallow networks work better?
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A partial answer to this question is given in [67]. Namely, from the math-
ematical viewpoint, a function computed by a multi-layer neural network is a
composition of several nonlinear functions – corresponding to different layers.
So, it makes sense to conclude that such computations are appropriate when
the dependencies that we are trying to describe can be naturally described as
such compositions. In other words, they are appropriate if we have a class of
functions that is closed under composition – i.e., a class that includes, with
every two functions, their composition as well. To describe the reverse depen-
dencies – the dependence of x on y as opposed to the dependence of y on x
– it makes sense to also assume that this class contains, with each function,
its inverse. In mathematics, classes of transformations that are closed under
composition and inverse are known as transformation groups. They are ubiqui-
tous in physics, where they describe natural invariances known as symmetries
[26, 72] – e.g., most physical processes do not change if we simply shift and/or
rotate the whole the whole system, in which case rotations and shifts form such
a group. Thus, we can conclude that deep learning is more appropriate if the
problem has natural symmetries – while in situations where there is no such
natural symmetry, shallow networks may work better.

This argument sounds somewhat too philosophical, but a simple example
confirms this conclusion: if we consider the simplest nonlinear smooth activation
functions – namely, quadratic ones – then the simplest way of combining two
such neurons to compute a 4th order polynomial of one variable is possible if and
only if this polynomial is invariant with respect to a reflection x 7→ a− (x− a)
with respect to some point a.

10.4 Selecting the best architecture

The empirical success of residual neural networks, when neurons can get inputs
not only from the directly preceding layer, but also from all preceding layers, is
explained in [31].

10.5 Pre-processing: why max-pooling?

Need for preprocessing. In shallow neural networks, we could have any
number of neurons in the first layer, and thus, we could deal with any number
of inputs. However, as we have mentioned, we can reach better accuracy if we
place these neurons in several layers. In this case, we cannot process as many
inputs as, e.g., a typical image has, we need to compress it.

Which pre-processing techniques are empirically successful. Empirical
tests shows that the most effective compression is achieved when we use either
max or arithmetic average of neighboring values.

How can we explain this success. Similar to the above explanations for the
empirical success of ReLU activation functions, we have two related explanations
for the empirical success of max-pooling:
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� a scaling-based explanation for this empirical phenomenon is given in [25,
39, 45];

� an explanation based on the desire to have fastest pooling operations is
given in [77].

Comment. Usually, we pull together values at the neighboring points. However,
in some cases, it is more convenient to pull together values in non-neighboring
points – namely, in points from an appropriate sub-grid of the usual grid of
pixels. This is known as dilated Convolutional Neural Network. Empirical
success of such networks can be explained by shift-invariance [19].

10.6 What objective function should we use

In general, in machine learning, we have the outputs yk corresponding to several
input tuples xk, and we want to find the parameters c of the corresponding

computational model f(x, c) for which zk
def
= f(xk, c) is close to yk for all k. From

a commonsense viewpoint, this means that we want the tuple (z1, z2, . . .) to be
as close to the given tuple (y1, y2, . . .) as possible. Both tuples are elements of
the multi-dimensional space, so it is reasonable to minimize the usual Euclidean
distance in this space

√
(z1 − y1)2 + (z2 − y2)2 + . . . – which is equivalent to

minimizing its square (z1 − y1)
2 + (z2 − y2)

2 + . . .. This idea is known as the
Least Square approach. This approach was used for traditional – shallow –
neural networks. However, empirically, it turns out that for deep learning, it is
more effective to use Kullback-Leibler (KL) divergence

−
K∑

k=1

[yk · log(zk) + (1− yk) · log(1− zk)].

In this formula, the values yk and zk are normalized, so that they are all located
in the interval [0, 1]. This formula makes sense when yk and zk are probabilities,
but in most applications of machine learning, they are not probabilities – so why
it this minimized expression so effective?

A decision-related explanation for this effectiveness is provided in [35]. The
ultimate goal of all computations is to make a decision. From this viewpoint,
ideally, we should have always have values zk equal to 0 or 1, corresponding to
two possible decisions. In practice, a neural network – or any other machine
learning tool – produce a value which is different from 0 and 1. Usually, to make
a decision, we select a threshold r: if zk > r, we make a decision corresponding
to 1, otherwise we make a decision corresponding to 0.

In different situations, we may use different thresholds. In many practical
situations, it makes sense to select r = 0.5. However, in many other situations,
it makes sense to select r close to 1 – e.g., if we are deciding on whether to
undergo a potentially dangerous surgical operations, it makes sense to only do
it when we are almost absolutely sure that this operation is needed. On the
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other hand, if there is a even a small risk of a hacker attack on an important
computer system, then it makes sense to invoke all our defenses – in this case,
the threshold is close to 0.

Since we do not have an a priori reason to believe that some thresholds are
more reasonable – and thus, more frequent – it makes sense to assume that all
threshold values from the interval [0, 1] are equally frequent, i.e., that the value
r is uniformly distributed on the interval [0, 1]. This means that in general, if we
encounter similar (N) situation with the resulting value z in different setting,
with different thresholds r, then with probability z we will make a positive
decision and with probability 1− z a negative decision. In other words, we will
have N · z positive decisions and N · (1 − z) negative decisions. The actual
probability that the decision is correct is determined by the actual (unknown)
value y which is, in general, somewhat different from z. We can us simple
probability formulas to compute the probability that the z-based arrangement
will only contain correct decisions. It turns out that maximizing this probability
is equivalent to maximizing the KL divergence.

10.7 Selecting initial weights

Empirically, the best idea is to use initial weights close to equal ones; this
empirical fact is explained in [1].

10.8 How to optimize the selected objective function: why
gradient descent?

In neural networks, the main way to find the optimum of the objective function
turns out to be gradient descent – namely, a specific algorithm implementation of
gradient descent which is known as backpropagation. This is somewhat puzzling,
since the experience of numerical optimization is that other methods are much
more effective. This puzzle is explained in [15].

Indeed, gradient descent works well when we are reasonably far away from
the actual minimum – and therefore, the gradient is different from 0. The
problem with the gradient descent is that when we get close to the minimum –
i.e., to the point when the gradient is 0 – the gradient becomes very small. As
a result, gradient descent – where the changes are proportional to the gradient
– becomes very slow. Thus, in numerical methods, optimization methods that
take second derivatives into account are much faster.

A specific feature of machine learning is that, in contrast to numerical meth-
ods, when we do need to find the exact minimum, in machine learning, we do
not want the exact minimum. The exact minimum would mean that we fit all
the training data perfectly. However, these data contain measurement errors,
so if we fit the data perfectly, we overfit, we fit the noise. For example, if we
have an approximately linear dependence and we have 3 observations, we can fit
them perfectly well with a quadratic curve – but it will be very wrong for large
inputs. In statistics, we do not want the perfect fit, we want, e.g., the sum of
the squares of all the deviations – from the ideal fit – to reach its most probably
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value – which is number of observations times the variance of the measurement
error.

Since we do not want to go near the actual minimum, gradient descent will
work well.

10.9 Why all this works?

Challenge. Empirically, it all works well. However, if we want to understand
why it all works, we gave a challenge.

In general, the more unknowns in a problem, the more computations we need
to find these unknowns. However, in deep learning, the opposite effect has been
observed: learning becomes more efficient when the number of parameters is
much larger than the number of equation – i.e., then the number of data points
that we try to match.

Our explanations. We have three related explanations for this challenge.
Two qualitative explanations for this paradoxical situations are presented

in [18]:

� The first explanation is that with the large number of parameters – neural
weights – whose initial values are random, the objective function become
random. It can be proven that a random function almost always attains its
optimum at a single point – and it is known that, in general, optimization
problems with this uniqueness property are easier to solve.

� The second explanation is related to the fact that training a neural network
is done by back-propagation – which, from the mathematical viewpoint,
is simply a gradient descent. The larger the gradient, the faster the min-
imized objective function decreases – and the more unknowns, the larger
the size of the gradient.

The third explanation is provided in [76]. This explanation is more mathe-
matical, it is based on the fact that neural networks are non-linear. To explain
how non-linearity explains this challenge, this paper uses a mathematical result
known as Chevalley-Warning Theorem – a result that was motivated by Fermat
Last Theorem.

10.10 How to best combine results of several trainings

To speed up training, deep learning algorithms use the idea of a so-called dropout
– they train several sub-networks on different parts of the data, and then “aver-
age” the results r1, . . . , rm. Empirically, geometric average m

√
r1 · . . . · rm works

the best. In [29, 39, 45], this empirical success is explained by scaling.
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10.11 How to make decisions based on the results of the
neural network: why softmax?

In neural networks or classification, we usually have, in effect, a special neural
network for each class i that estimates the strength si of evidence that a given
object belongs to this class. These values are then transformed into probabilities
pi of belonging to different classes. Empirically the most effective transformation
is softmax:

pi =
exp(a · si)∑
j

exp(a · si)
.

Its empirical success can be explained by invariance which is similar to scale-
invariance: invariance with respect to selecting the starting point for measure-
ments [39, 45].

10.12 Can all this be practically useful?

Most of the results that we cited so far simply provide theoretical justification
for features and techniques that have already been empirically proven to be
successful. Yes, the presence of such theoretical explanations makes us more
confident in using these techniques. However, a natural question is: can it help
to come up with better techniques?

This question was often raised by a Russian Nobel-prize winning physicist
Lev Landau who dismissed foundational papers with no practical application
by calling them Neue Begrundung – New Foundations – which were the typical
first words of such a paper’s title.

In our defense, we can mention that in physics, symmetry methods have in-
deed led to interesting theories and interesting discoveries – to the extent that, in
contrast to Newton’s time when new theories were formulated in terms of differ-
ential equations, now many theories are described in terms of their symmetries
and invariances – and differential equations follow from these invariances; see,
e.g., [26, 72]. One of the first such symmetry-motivated theories was the theory
of quarks – see our related comment in the next section.

We cannot yet brag of similar major successes in neural networks, but we
can brag about some successes in this direction: e.g., in [3], we showed that
symmetry-motivated pre-processing can help a neural network to better diag-
nose different lung disfunctions in children.

11 Applications beyond machine learning

11.1 What we do in this section

Similar ideas and results can be used to explain empirical success of other data
processing techniques – techniques not necessarily related to machine learning
– both in general and in applications to specific application areas.
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We start this section with techniques related to uncertainty processing. Data
for processing comes either from measurements or from experts – mostly from
measurements. So, we start this section with dealing with uncertainty of mea-
surement results – which, as we will explain, often results in interval uncertainty.
Then, we deal with uncertainty of expert information – techniques for dealing
with this information are known as fuzzy techniques.

After that, we provide two examples of other data processing techniques.
Finally, we provide two examples of specific applications: to the study of the
physical world and to decision making.

11.2 Applications to interval techniques

What is the problem. Computers process data. Most data either comes
from measurements – or from the previously performed processing of measure-
ment results. Measurements are never absolutely accurate, there is usually some

difference ∆x
def
= x̃ − x between the measurement result x̃ and the actual (un-

known) value x of the corresponding physical quantity. The manufacturer of
the measuring instrument usually provides an upper bound ∆ on the absolutely
value of the measurement error. Indeed, if there was no such bound, this means
that no matter what the measurement result is, the actual value can be as large
as theoretically possible – and this will be not a measurement, but a wild guess.

Ideally, we should also know how frequent are different values of the measure-
ment error from the interval [−∆,∆]. However, determining the corresponding
probabilities requires a lot of testing, and such testing is rarely done for run-of-
the mill sensors. So, in many practical situations, all we know about the mea-
surement error of each measurement x̃i is the corresponding upper bound ∆i.

We process this data, i.e., we apply some algorithm f(x1, . . . , xn) to the
measurement results x̃i and get the result ỹ = f(x̃1, . . . , x̃n). Since the mea-
surement results are somewhat different from the actual values, the result ỹ
of processing measurement results is, in general, somewhat different from the
result y = f(x1, . . . , xn) that we would have gotten if we know the exact values
xi of the input quantities.

In many practical applications, it is important to know how accurate is the

estimate ỹ, i.e., how big can be the difference ∆y
def
= ỹ − y. For example, when

an oil company wants to decide whether to invest into a prospective oil field,
it estimates the amount of oil. If this estimate is ỹ = 150 million tons and ∆y
does not exceed 10 million, then we should start drilling. However, if ∆y can
be as large as 200 million, then maybe there is no oil at all – so more estimates
are needed.

In general, this problem is NP-hard, but for many practical cases,
there are feasible algorithms. In general, the problem of estimating the set
of possible values of y = f(x1, . . . , xn) when about each xi we only know it
belongs to the interval [x̃i − ∆i, x̃i + ∆i] is known as the problem of interval
computations; see, e.g., [32, 55, 59, 61]. In general, this problem is NP-hard;
see, e.g., [49].
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However, in practical situations, the measurement errors are small. Then,
we can safely ignore the terms which are quadratic (or of higher order) in terms
of ∆xi and keep only linear terms. For example, even for a non-very-accurate
measurement, with accuracy of 10%, the square of this term is 1%, which is
much smaller than 10%.

If we only keep linear terms, then we get

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn) ≈
n∑

i=1

ci ·∆xi,

where

ci
def
=

∂f

∂xi xi=x̃i

.

One can check that when ∆xi take values from the interval [−∆i,∆i], then ∆y
takes values from the interval [−∆,∆], where

∆
def
=

n∑
i=1

|ci| ·∆i.

Additional complication: need to deal with black-box algorithms.
When we have an explicit expression for the data processing algorithm, we
can explicitly find all the derivatives ci. However, in many practical situations,
we use commercial packages for data processing, for which the data processing
algorithm is proprietary – for us, it is a black box. In these case, we cannot
compute the derivatives analytically, we can only find them numerically, as

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
,

for some small h. However, this requires n+1 calls to the algorithm f : one call
to compute ∆y, and n calls to compute the values f(. . . , x̃i−1, x̃i + h, x̃i+1, . . .).
In situations like oil prospecting, we process thousands of data points, and each
call to f may take hours on a high performance computer. In such situations,
repeating such calls thousands of times is not realistic.

Cauchy deviates: a mathematical trick that needs a commonsense ex-
planation. There is a mathematical trick that helps speed up computations;
see, e.g., [43]. It is based on the fact that if each input ∆xi is Cauchy distributed
with parameter ∆i, then the resulting values ∆y are also Cauchy distributed,
with exactly the desired parameter ∆. This is a trick since Cauchy distribu-
tion with parameter ∆i is not limited to the interval [−∆i,∆i]. It is therefore
desirable to have some intuitive understanding of the resulting Cauchy deviate
method.

Neural network ideas can lead to such an explanation. It turns out that
neural network ideas can lead to such an explanation [50].
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Relation to interval fields. The ideas explaining why we need neural net-
works in the first place can also explain the empirical success of interval field
technique [10] – one of the techniques for dealing with interval-valued fields. In
this technique, we fix several basic fields, and approximate a general field by
a linear combination of the basic fields, with interval-valued coefficients. The
same ideas were used in [10] to provide possible ways to further improve this
technique.

11.3 Applications to fuzzy techniques

Why some versions of fuzzy techniques are more empirically success-
ful. In fuzzy techniques (see, e.g., [12, 34, 60, 64, 65, 78]), many empirically
successful selections of membership functions, “and”- and “or”-operations, oper-
ations corresponding to hedges, and defuzzification procedures can be explained
by the desired to have the fastest possible computations [54, 77].

In [37], it is shown that two more empirically successful formulas can be
explained by the desire to have the fastest possible computations:

� a fuzzy version of the “k out of n condition” – typical in medical diagnos-
tics, and

� Zadeh’s extension of the notion of set cardinality to the case of fuzzy sets.

Scaling – in particular, non-linear scaling – also explains the empirical fact
that the best way of using fuzzy degrees in training a neural network is to first
apply a sigmoid transformation x 7→ 1/(1 + exp(−x)) to these degrees [5].

Why some algorithms for processing fuzzy techniques are empirically
successful. Processing of fuzzy data is usually reduced to processing so-called
alpha-cuts: intervals formed by all the values x for which the degree of confi-
dence is larger than or equal to some value α. Since, as we have mentioned,
neural network ideas can help explain techniques for processing intervals, it can
therefore explain why these techniques are used in the fuzzy case as well.

When traditional fuzzy techniques work better and when more com-
plex (e.g., type-2) techniques work better? In the traditional fuzzy tech-
niques, experts’ degrees of confidence in different imprecise statements like “x is
small” are described by numbers. However, similarly to the fact that the expert
cannot produce the exact estimate, he/she can only say that x is small, the
same expert cannot naturally provide a single number describing his/her degree
of confidence: it is 0.80 or 0.81? A more natural idea is to ask the expert to
provide an interval of possible degree – or even an imprecise (“fuzzy”) statement
describing his/her degree. This idea is known as type-2 fuzzy sets.

Type-2 fuzzy sets provide a more adequate description of the expert’s opin-
ion. However, since now we need at least two numbers to describe each expert’s
degree – e.g., endpoints of the expert-provided interval – processing type-2 val-
ues takes more time. Empirically, sometimes, the speed is the main problem, so
type-1 methods work better; in other cases, time is not that restricted, so type-2
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methods are better. It is desirable to have general recommendations on when to
use faster type-1 techniques and when to use slower-but-more-accurate type-2
fuzzy techniques. In [47], neural-related ideas are used to provide an answer to
this question.

11.4 Applications to other data processing techniques: ex-
amples related to statistical and heuristic techniques

Application to statistical techniques. Arguments similar to the ones that
we used to explain why neural networks are effective can be used to explain the
empirical success of so-called “surrogate’ statistical techniques [68].

Similar arguments can also explain the empirical success of Karhunen-Loéve
(KL) decomposition, when an unknown function is represented as a linear combi-
nation to eigenfunctions of the covariance – and suggest ways to further improve
this technique [10].

Application to heuristic techniques. In many practical situations, linear
approximation is not very accurate, but, e.g., quadratic approximations require
too many parameters and are, thus, too time-consuming. In such situations, one
of the empirically successful techniques are Ordered Weighted Average (OWA)
aggregation operations that transform values x1, . . . , xn into

w1 · x(1) + . . .+ wn · x(n),

where x(i) are the ordering of the inputs xi: x(1) ≤ . . . ≤ x(n).
Invariance ideas explain the empirical success of these techniques [42].

11.5 Applications to physics

As we have mentioned earlier, neural networks have a universal approximation
property: any continuous function on a bounded domain can be approximated,
with any desired accuracy, by a neural network. It is also true that have a
stronger universal representation property – according to Kolmogorov theorem,
any continuous function on a bounded domain can be exactly represented as
a composition of addition and functions of one variable – which is, as we have
mentioned, exactly neural networks.

As shown in [40], this result enables us to describe any interaction between
particles in terms of pairwise interaction between the original particle and ficti-
tious “particles” – just like a 3-chemicals reaction a+ b+ c → d can be formally
represented as a sequence of to pairwise reactions a+b → ab and ab+c → d, with
a “fictitious” substance ab. It turns out that for this representation, we need to
add 3 new “fictitious” particles for each newly added real particle. This seems
in good accordance with the fact that, according to modern physics [26, 72]:

� protons and neutrons – some of the basic particles or the Universe that
carry most mass of the normal matter – consist of 3 sub-particles (quarks)
each, and
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� these quarks are, in some sense, “fictitious” particles: while we can sep-
arate electrons, protons, and neutrons from an atom, we cannot separate
quarks from each other; this property is known as quark confinement.

11.6 Applications to group decision making

Let us describe group decision making in precise terms. The decision of
a group depends on the preferences of all the participants. According to decision
theory (see, e.g., [27, 28, 41, 58, 62, 63, 66]), preferences of a rational person
i (i = 1, 2, . . . ,m) can be described by assigning, to each possible alternative
j (j = 1, 2, . . . , n) a numerical value ui,j called its utility. Utility is usually
selected in such a way that the i-th person’s utility ui of a situation in which we
get each alternative j with probability pj is equal to ui = p1 ·ui,1+ . . .+pn ·ui,n.

In practice, in most decision making situations – e.g., diving the inheritance
– when it is not possible to divide absolutely equally, there is always possibility
to reach equality if other participants pay some money to the participant who
gets a smaller portion. Utility is usually non-linearly related to money, so that
the money equivalent to the utility ui is equal to Mi(ui) for some non-linear
function Mi(ui). In this arrangement, the best alternative p = (p1, . . . , pn) is
the one for which the overall equivalent money value M(p1, . . . , pn) – described
by the sum of money values – is the largest:

M(p1, . . . , pn) =

m∑
i=1

Mi(p1 · ui,1 + . . .+ pn · ui,n).

How this is related to a neural network. The paper [73] noticed that this
expression is exactly the general expression for a function computed by a shallow
neural network – i.e., a neural network with a single hidden layer. According to
[73], this fact has both negative and positive consequences.

Negative consequence. Since shallow neural networks are universal approxi-
mators, this means that the resulting function can be any continuous function –
and thus, it can be as complex as possible, we cannot expect a feasible algorithm
for solving all particular cases of this problem.

Positive consequence. A positive consequence is that since the corresponding
function is the same as for neural networks, then, to find a solution, we can use
techniques that work well for neural networks – such as back-propagation.

12 Instead of conclusion

In this paper, we provided an explanation for many empirically successful neural
techniques – and cited many papers where other empirical successes are similarly
explained. There are so many things explained that at first glance, it may
sound as if most empirical successes have already been explained – especially
if one takes into account that we focused mostly on explanations in which we
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ourselves participated, and other researchers have produced many alternative
explanations for these and other empirical phenomena.

However, the above optimistic impression is false. Only a small proportion
or empirical successes has been explained – and many of these explanations are
still more on the qualitative level, they need to be made quantitative.

Also, deep learning applications – in particular, applications to decision mak-
ing – are a booming field. Many new empirical successes are reported every
week, maybe even every day – and, of course, it will be helpful if we can explain
them. More explanations are needed, and we hope that this paper will inspire
researchers to come up with such explanations!
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