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Abstract According to the experimental data, for the sum of two quantities – each
of which is described by a subjective interval – the most natural interval is described
by a Pythagoras-type formula. In this paper, we show that this experimental result
can be explained based on decision theory. Furthermore, we show how this expla-
nation allow us to generalize the empirical formula from addition to general data
processing algorithms.

1 Formulation of the problem

Why subjective intervals. In many practical situations, we rely on expert estimates
of different quantities – economists estimate current and future characteristics of the
economy, medical doctors estimate difficult-to-measure health-related parameters,
geoscientists estimate the risk of a strong earthquake, etc.

Expert estimates are usually imprecise. When we ask the experts how accurate
their estimates are, they provide a “plus-minus” answer: e.g., 50±10. Such an an-
swer means that, according to this expert, the actual value is most probably located
in the interval [50−10,50+10] – or, more generally, on the interval [x̃−∆ , x̃+∆ ],
where x̃ is the original estimate, and ∆ describes the expert’s estimate of the uncer-
tainty of his/her original estimate. We will call such intervals subjective.
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Need to propagate subjective interval uncertainty. Expert estimates are used to
help solve practical problems: what to do with the economy, how to best treat the
patient, what requirements to impose on the new buildings in an earthquake-prone
area. To make these decisions, we need to process these estimates. Since expert
estimates come with uncertainty, the result of processing these estimates also has
uncertainty. It is desirable to estimate this uncertainty, to estimate the accuracy of
the result of data processing – i.e., to propagate subjective interval uncertainty via
the data processing algorithm.

For processing subjective intervals, it is desirable to come up with operations that
best match what humans perceive as the most natural way to process such intervals.

What is known. To decide which operations on subjective intervals are most nat-
ural, authors of the papers [19, 21] asked participants to compare several different
options. Specifically, in these studies, participants were asked to decide which ex-
tensions of arithmetic operations to subjective intervals are the most natural.

To come up with different extensions – and to make the corresponding questions
easier to ask – the authors of these papers transformed the input subjective intervals
into fuzzy numbers (see, e.g., [1, 7, 13, 17, 18, 24]) – i.e., into nested families
of intervals corresponding to different degrees of uncertainty α ∈ [0,1] – and then
asked the participants to compare subjective intervals corresponding to processing
fuzzy numbers of different shape. It turned out that for addition x = x1+x2, the most
natural estimate for the value ∆ corresponding to the sum comes from Gaussian-

shaped fuzzy numbers – for which ∆ =
√

∆ 2
1 +∆ 2

2 .
In particular, this value turned out to be more natural than the value ∆ = ∆1 +∆2

corresponding to the usual interval arithmetic (see, e.g., [6, 10, 12, 14]).

Remaining questions – and what we do in this paper. This empirical result natu-
rally leads to two questions: how to explain it – and how to extend it to other data
processing algorithms. In this paper, we provide answers to both questions.

2 How to explain the empirical formula for the sum of two
subjective intervals

Our main idea: let us reformulate our problem in statistical terms. In general,
a natural measure of deviation from the mean value is the standard deviation; see,
e.g., [22]. It is therefore reasonable to interpret the values ∆i as either equal to – or
proportional to – standard deviation: ∆i = k ·σi for some constant k > 0. In these
terms, the question becomes: if we know the standard deviations of two random
variables – and we know nothing else – what is then a reasonable estimate for the
standard deviation σ of their sum?

Comment. In principle, we can also have bias, i.e., a non-zero mean value. However,
a bias, once discovered, it easy to correct – it is sufficient to subtract the mean from
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all the estimates. So, in this argument, we can assume that the bias has already been
eliminated, and the resulting mean is 0.

Let us analyze the reformulated problem. Of course, in the above situation, we
cannot uniquely determine the actual value of σ – this value depends on whether
the variables are independent or not. What are, in this situation, the possible values
of σ?

It is known that, in general, for the sum of two random variables ξ1 and ξ2, we
have σ2 =σ2

1 +σ2
2 +2C12, where C12

def
= E[(ξ1−m1) ·(ξ2−m2)] is the covariance of

these random variables. It is known that the random variables can be represented as
vectors in a multi-D space whose length is σi, and the sum of these random variables
is simply the sum of these two vectors. In these terms, the problem becomes purely
geometric: we know the lengths of two vectors, and we want to know what are the
possible values of the length of their sum.

This geometric problem is easy to solve:

• the largest possible length of the sum is when both vectors are parallel and are
oriented in the same direction, in which case σ = σ1 +σ2, and

• the smallest possible length of the sum is when both vectors are parallel and are
oriented in different direction, in which case σ = |σ1 −σ2|.

The same result can be obtained if we take into account a similar formula with
correlation, a value between −1 and 1: σ2 is an increasing function of correlation,
so the largest value of σ corresponds to correlation 1 and is equal to the sum, and
the smallest value of σ corresponds to correlation −1 and is equal to the absolute
value of the difference.

So, we have the whole interval [|σ1 −σ2|,σ1 +σ2], and we need to decide which
value from this interval we should select.

Comment. A similar interval can be obtained if we consider the range [−∆ ,∆ ] of the
values of the sum x1 + x2 of two possibly related quantities for which each xi can
take all the values from the interval [−∆i,∆i]: the largest possible ∆ is ∆1 +∆2 and
the smallest possible is ∆ = |∆1 −∆2|; see, e.g., [9].

How can we make this decision? Let us recall what decision theory recom-
mends. To make the desired decision, let us follow recommendations of decision
theory. According to decision theory – see, e.g., [3, 4, 8, 11, 15, 16, 20] – decisions
of rational people can be described by an appropriate function u(a) known as util-
ity: namely, we always select the alternative with the largest value of the utility. The
utility is defined in such a way that the utility of a situation in which we have differ-
ent outcomes with different probabilities is equal to the expected value E[u(a)] of
the utility. It is also known that utility is defined modulo an increasing linear trans-
formation: if u(a) is a utility function, then, for each c0 and c1 > 0, the function
c=0+ ca ·u(a) is also utility, with the same properties.

For some alternative a, we do not know the exact value of the utility, we only
know the interval [u(a),u(a)] of its possible values. In this case, according to a
discovery made by a Nobelist Leo Hurwicz (see [5, 8, 11]), we should assign, to
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this alternative, a value αH · u(a)+ (1−αH) · u(a), for some αH ∈ [0,1], and there
are good arguments to select αH = 0.5.

Let us apply decision techniques to our problem. How does the utility depend on
the difference ∆x def

= x̃− x between the estimate x̃ and the actual value x? To answer
this question, in the first approximation, let us use the idea that has been successfully
used in physics (see, e.g., [2, 23]): we expand the unknown dependence of the utility
on ∆x in Taylor series and keep the smallest number of terms necessary to achieve
good agreement with qualitative ideas.

In general, any difference ∆x ̸= 0 makes decisions worse. For example, while the
exact maximum magnitude of a potential earthquake in a given area is uncertain,
overestimating its strength may lead to higher construction costs for an event that
may not happen. On the other hand, underestimating the potential strength of an
earthquake significantly increases the risk of structural failure and human casualties
when a major seismic event occurs.

In general, the further ∆x from 0, the worse. So, utility attains its maximum
when ∆x = 0. Thus, the linear terms in the Taylor expansion is 0, so we need to
take a quadratic term into account, i.e., take u(∆x) = a0 − a2 · (∆x)2, for some a0
and a2 > 0. We can use the fact that the utility function is defined modulo a linear
transformation, and apply the transformation u 7→ a−1

2 ·(u−a0), resulting in u(∆x)=
−(∆x)2.

Thus, the utility of the whole random situation is equal to the expected value
of this expression, i.e., to −σ2. So, in our situation, since the standard deviation σ

takes the values from |σ1 −σ1| to σ1 +σ2, utility values form an interval

[−(σ1 +σ)2,−|σ1 −σ2|2].

Thus, according to the Hurwicz’s approach with αH = 0.5, this situation is equiva-
lent to the utility

0.5 · (−(σ1 +σ)2)+0.5 · (−|σ1 −σ2|2) =−(σ2
1 +σ

2
2 ).

We therefore need to select the value σ for which the utility −σ2 is equal to this

expression: −σ2 =−(σ2
1 +σ2

2 ). Thus, we get σ =
√

σ2
1 +σ2

2 . Substituting the ex-
pressions σi = k ·∆i and σ = k ·∆ into this formula and dividing both sides by k, we

get exactly the empirical equality ∆ =
√

∆ 2
1 +∆ 2

2 that we need to explain.

3 What about other data processing algorithms

What if we consider a general data processing algorithm f (x1, . . . ,xn)? In this case,

we are interested in the difference ∆y def
= f (x̃1, . . . , x̃n)− f (x1, . . . ,xn) between the

result of data processing and what we would have gotten if we knew the exact values
xi. Here, by definition of ∆xi, we have xi = x̃i −∆xi, so
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∆y = f (x̃1, . . . , x̃n)− f (x̃1 −∆x1, . . . , x̃n −∆xn).

Since we keep only the smallest non-trivial terms in the Taylor expansion anyway,
let us keep the smaller non-zero terms in the expansion of this expression as well.
In this case, the smallest non-zero terms are linear, so

∆y = ∑
i=1

ci ·∆xi, where ci
def
=

∂ f
∂xi

.

In this case, imagining that we are talking about the length of the sum of vectors of
length |ci| ·σi, we can see that the largest length is when all the vectors are parallel
and oriented in the same direction. The smallest possible value is non-zero if one of
the terms |c j| ·σ j is larger than the sum of the others, then

σ = |c j| ·σ j −∑
i̸= j

|ci| ·σi.

In general, we get an interval [σ ,σ ], thus a utility interval [−(σ)2,−(σ)2]. If we
apply Hurwicz’s approach to this formula, then arguments similar to those used in
the case of addition, lead us to the following formula for ∆ :

• If there exists an index j for which

|c j| ·∆ j > ∑
i̸= j

|ci| ·∆i,

then

∆ =

√√√√c2
j ·∆ 2

j +

(
∑
i̸= j

|ci| ·∆i

)2

.

• Otherwise, we have

∆ =
1√
2
·

(
n

∑
i=1

|ci| ·∆i

)
.

Comment. It should be mentioned that, in general, the value ∆ corresponding to, e.g.,
x1+x2+x3 is not equal to the interval obtained if we first combine x1 and x2 and then
x3. For example, for ∆1 = ∆2 = ∆3 = 1, the first idea leads to (1+ 1+ 1)/2 = 1.5,
while the second leads to

√
3 ≈ 1.73.
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