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Abstract In many practical situations ranging from economics to medicine to geo-
sciences, we use expert estimates of different quantities. To get a better understand-
ing of expert’s opinion, it is also reasonable to ask the expert for the perceived
accuracy of his/her estimate. As a result, each expert estimate looks like 50 £ 10,
i.e., it is, in effect, an interval of the type [40 — 10,40 + 10]. Often, we ask several
experts. In this case, we need to combine several resulting subjective intervals into
a single interval that we will use to make a decision. In this paper, we describe a
natural way to combine subjective intervals.

1 Formulation of the problem

Need for expert estimates. In many application areas, to make good decisions,
it is useful to take into account not only the measurement results, but also expert
estimates. Businesses use expert opinion on the future economics situation when
making important decisions, medical doctors consult experts if needed, oil compa-
nies use expert estimates of the potential oil fields productivity to decide where to
invest their efforts, etc.

Need for interval estimates. Some experts provide more accurate estimates, some
less accurate ones. When we take the opinions of different expects into account,
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it is desirable to know how accurate is their estimates. A natural way to get this
information is to ask an expert to provide not only a numerical estimate x, but also a
bound A on how far, in his/her opinion, the estimate x can be from the actual value
of the estimated quantity.

Once we have both x and A, we can then conclude that most probably, the actual
value of the corresponding quantity is located in the interval [x — A, x + A]. We will
call such intervals subjective.

Need to combine expert estimates. The reason why we ask experts for their esti-
mates is that we need to use these estimates in our decisions. If we have a single
numerical estimate x, then we can use it in our decision making.

However, in many important practical situations, to gain more information, we
ask several experts to estimate the same quantity. For example, in civil engineering,
inspectors regularly inspect roads, bridges, public building, etc., and report on pos-
sible cracks and other faults. For each fault, we have several estimates of its location
coming from different inspections.

Based on these estimates, we need to come up with a combined estimate that
we will use in our decision making. In other words, we need to combine expert
estimates — which are either numerical estimates xi, .. .,x, or interval estimates

[xl —Ar1,x1 +A1],...,[x,1 — Ay, Xy +An}a

into a single estimate.

How to combine expert estimates? It is desirable to find a natural way to combine
several estimates into a single estimate.

What we do in this paper. In this paper, we provide such a natural combination
method. To come up with this method, first, in Section 2, we consider the case
when we need to combine numerical estimates. An important dynamical version of
this problem is considered in Section 3. Then, in Section 4, we consider the case
when we need to combine interval estimates which are of the same width. Finally,
in Section 5, we consider the general problem of combining subjective intervals.

2 Combining numerical estimates

Problem: reminder. We have n values xp, ..., x,, and we need to combine them into
a single estimate x.

Analysis of the problem. There are many different reasons why an expert estimate
is different from the actual value of the corresponding quantity. In statistics, it is
known that, under some reasonable conditions, if we have different independent
factors, then their joint effect is close to Gaussian; the related mathematical result is
known as the Central Limit Theorem; see, e.g., [2]. We can therefore conclude that
the values x; come from a Gaussian distribution.
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Such a distribution is characterized by two parameters — mean and standard dis-
tribution. So, to describe the whole sample x1,...,x,, we need to estimate the mean
m and the standard deviation ¢. For example, we can use the usual estimates:

1
n n—1

(xi —m)?. (1)

.M:

i=1

Then, we can conclude, with an appropriate confidence, that the actual value x is
contained in a k-sigma interval [x — k- 0,x+ k- o], for some k.

Which value k to select depends on how much confidence we need. Usually,
practitioners select k = 2, k = 3, or k = 6: the selection k = 3 corresponds to 99.9%
confidence, and the selection k = 6 corresponds to 1 — 108 confidence.

Resulting method.

* First, we compute the values (1).

* Then, we inform the interested parties that the actual value of the quantity x is
most probably contained in the interval [x — k- 0,x+ k - G], where the selection
of the value k depends on what level of confidence we want.

What if some estimates are outliers? Some of the estimates may be completely
way off, outliers. To avoid such outliers influencing the decision, a usual idea in
statistics 1S to use robust versions of statistical methods, i.e., versions for which the
resulting value does not change much if we simply add an outlier.

For example, we can:

¢ sort the values x; into a monotonic sequence x(1) < xz) < ... < X(,),
* dismiss the lowest 5% and the top 5% of the values, and
e perform computations based only on the remaining values.

Comment. A similar modification can be applied to all the other methods described
in this paper.

3 Combining numerical estimates: dynamical case

Problem. The above estimate is appropriate when we have a static quantity, i.e., a
quantity that does not change with time — like the location of a fault. But sometimes,
we are also interested in a dynamically changing quantity — e.g., the size of the fault.
This size can increase with time, but it can never decrease.

In this case, arithmetic average is not a good option. In the static case, as we
have shown in the previous section, it seems natural to use the arithmetic average
of all the expert estimates. However, for dynamic quantities, it makes no sense to
take the arithmetic average. For example, if we observe sizes 10, 20, and 30 in three
consequent moments of time, then it does not make sense to return the average value
20 as the current fault size — since we already observed size 30.
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This example may prompt us to suggest to pick up the latest estimate — but this
would make sense only if these were exact measurements. Since these are estimates,
and estimates are, in general, different from the actual values, the latest estimate may
be smaller than the previous one. So what do we do?

Analysis of the problem. Without losing generality, we can assume that the es-
timates x; are sorted chronologically: x; is the earliest estimate, x, is the second
earliest, etc. We know that each estimate x; is approximately equal to the corre-
sponding actual value a;, and the only thing that we know about these actual values
is that they form a non-decreasing sequence:

a <a <...<a,.
In this case, a natural idea is to provide better estimates for the values a; by
minimizing the sum of the squares

(%1 —al)z—i—...—i—(xn—an)2

under the above monotonicity condition — and then return the latest estimate a,, as
the estimate for the latest value of the quantity (e.g., the latest value of the fault
size).

Resulting algorithm. There is a known algorithm for solving this constraint mini-
mization problem; see, e.g., [1].

Since this algorithm is not as widely known as the general Least Squares tech-
nique, let us explain this algorithm. On each stage of this iterative algorithm, the

integer-valued interval [ def {1,2,...,n} is divided into several non-intersecting
subintervals I, b, ..., so that the interval [ starts with I;, which is followed by
I, etc.

We start by diving into n one-point intervals I; = {1}, I, = {2}, etc. For each
sub-interval /;, we compute the arithmetic mean m(/;) of all the values x; for i € I;.

If for some j, we have m(I;) > m(I;1), then we merge the sub-intervals /; and
I, into a single sub-interval, and repeat the procedure again. We stop when no
changes are possible, i.e., when m(l;) < m(L) < ... Then, for each i € I; we take
a; = m(I j).

Numerical example. Let us illustrate this algorithm on a simple example. Let us
assume that x; = 10, x, = 30, and x3 = 20. We start with the trivial subintervals
I = {1}, L = {2}, and 5 = {3}. Since each of these sub-intervals consists of a
single value i, the arithmetic average is simply the corresponding value x;: m(I;) =
10, m(I) = 30, and m(I3) = 20.

In this case, m(ly) > m(l3), so we merge the sub-intervals I, and 3 into a single
sub-interval I, Uz = {2,3}. Now we have a subdivision into two subintervals: the
original subinterval /; for which m(/;) = 10 and the new subinterval I;, = {2,3} for

which 30420
m(l) = % — 25,
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Now, m(I;) = 10 < m(I5) = 25, so the process stops.

In this final division into sub-intervals, index i = 1 is contained in the sub-interval
I, so we take a; = m(I;) = 10. Indices i = 2 and i = 3 are contained in the sub-
interval I}, so we take ap = a3 = m(Ié) =25. In particular, as the latest estimate, we
take a3 = 25.

4 Combining interval estimates: case when all the intervals have
the same width

Problem: reminder. We have n intervals [x; —A,x; + A], ..., [x, — A,x, + A]. We
need to combine these intervals into a single interval.

Analysis of the problem. In the previous case, we had only one reason why the
estimates are different from the actual value — since we human are not perfect. In
the current case, we have two reasons for the difference:

» First, as in the previous case, we are not perfect. Even if we had perfect knowl-
edge of the situation, our estimate would still deviate from the actual value. This
explains the difference between the estimates x; and the combined estimate x.

* Second, we do not have perfect information. So, even if we were perfect reason-
ing and calculating machines, we would not be able to predict the exact value.
This explains the +A term.

From this viewpoint, all we need to do is combine the numerical estimates x; — and
we already know how to do it — and then add +A term to the resulting confidence
interval. Thus, we arrive at the following algorithm.

Resulting method.

* First, we compute the values (1).

* Then, we inform the interested parties that the actual value of the quantity x is
most probably contained in the interval [x — k-0 — A,x+ k-6 + A], where the
selection of the value k depends on what level of confidence we want.

Examples. Let us illustrate the resulting algorithm on simple examples.

The simplest examples is when all intervals are identical, i.e., x; = ... = x,. In
this case, we have m = x; and 6 = 0, so the combined interval is equal to each of
the combines intervals — which makes sense. If all the experts agree that the fault is
located in the interval [x; — A,x; + A], then this joint interval should be returned as
the group estimate.

This was an extreme case, when all intervals are identical. The opposite extreme
case is when intervals are disjoint. Let us consider the simplest such situation, when
we have two disjoint intervals, i.e., intervals [x; —A,x; +A] and [x; — A, x; + A] for
which x| + A <xp —A.
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If these intervals were guaranteed bounds on the actual value, then from the fact
that these intervals do not have a common point we would conclude that our infor-
mation is inconsistent. However, strictly speaking, there is no inconsistency: experts
are not claiming that values outside their intervals are impossible, they just say that
such values are less probable.

What should we return in this case? We have two similar opinions, we have no
reason to prefer one to another, so it makes sense to return an interval that contains
both these intervals — and maybe something else. Let us show that this is exactly
what we get if we use the proposed method. Indeed, in this case, we have

X1 +x2 X2 — X1
M=, 0T T

so already for k = 1, we have

X1+ x2 XX
2 2

m—k-oc—A= —A:xl—A

and similarly

m+k-o+A= ¥+%+A =x+A.
So indeed, in this case, the combined interval contains both original intervals — in
this case, it is actually the smallest interval that contains both given intervals. For
k > 1, the resulting combined interval is even wider, so it contains both original
intervals and some additional points — as expected.

This example does not mean that the resulting interval always contains all given
intervals. For example, if we have N > 1 intervals equal to [x; — A, x; + A], and only
one interval equal to [x, —A,x, + A], then for N — oo, the combined interval tends
to [x; — A, x; + A]. This too seems to be in line with common sense.

5 General case

Problem: reminder. We have n intervals [x; — Ay, x; + Aj], ..., [x, — Ap, Xy + Ay
We need to combine these intervals into a single interval.

Analysis of the problem. In this general situation, the accuracies A; of different
experts are different. So, it makes sense to take this into account when combining
the values x;: namely, we should give more weight to more accurate estimates, for
which the value A; is smaller. In statistical terms, instead of using arithmetic average
(1) — that corresponds to the case when all combined values have the same standard
deviation — let us assume that the standard deviations o; are proportional to the
values A;, i.e., 6; = k- A; for some k > 0.

In this case, the Least Squares method for finding the combined value m means
minimizing the following sum:
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n 2

x; —m)> " (x; —m)? 1 & (xi—m
Z( O-iZ) :Z((k. l))2 :kle{(AlZ)

i=1 i=1

If we differentiate this expression with respect to the unknown m and equate the
derivative to 0, we get the following expression for the estimate m:
n ( A; )—2

m= Zw,wxi, where w; = At @) (2)

i=1

We can now compute the estimates for 6> and for A by combining, with the same
weights, values (x; —m)? and A;:

n n
62:Zwi-(x,-—m)2andA:Zwi-A,-. (3)
i—1 i=1

So, we arrive at the following algorithm.
Resulting method.

» First, we compute the values (2)-(3).

e Then, we inform the interested parties that the actual value of the quantity x is
most probably contained in the interval [x —k- o — A,x+ k- o + A], where the
selection of the value k depends on what level of confidence we want.
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