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Abstract We rarely have precise knowledge about a physical quantity. Often, the
only information that we have about a quantity is an interval. To process this infor-
mation, we need to be able to represent intervals in a computer. For this purpose,
we need to represent an interval by numbers. Usually, the most effective and effi-
cient ways to represent an interval are either to represent it by its endpoints or by
its midpoint and radius (half-width). This choice has been partly explained by using
natural invariance — with respect to selecting a different measuring unit or a different
starting point for measurements. In this paper, we extend this explanation by listing
all numerical characteristics of an interval that have such natural invariances, and
we list possible applications of our result.
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1 Formulation of the problem

Intervals are ubiquitous. We rarely know the exact value x of a physical quantity.
Usually, we only know bounds x and X for which x < x <X —i.e., in effect, we only
know the interval [x,] that contains x; see, e.g., [6, 10, 13, 15, 18].

How should we represent an interval in a computer? To make decisions, we need
to process information about the physical quantities. Since this information often
comes in terms of an interval, we need to process intervals. To process them, we
need to represent intervals in a computer. In a computer, we can only store numbers.
So, to be able to store intervals, we need to represent an interval by numbers.

A straightforward idea is to store the two endpoints x and X of the interval. Often,
it is useful to represent an interval by its midpoint
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2

and its radius — also known as half-width:
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Natural question. A natural question is: why these characteristics? What other
characteristics can we use?

What is known and what we do in this paper. The only related publications that
we could find were [2, 3] that explain why using midpoint is effective and efficient
in several practical cases. Some of these explanations are based on invariances, one
of the main tool in physics (see, e.g., [4, 19]).

In this paper, we analyze all related invariances, and for each of them, describe
which characteristics have these invariance properties. We will see that if we im-
pose too few invariance requirements, then we have a class depending on arbitrary
functions — i.e., an infinite-dimensional class. However, if we impose enough re-
quirements, we will get a unique characteristic — or a few-parametric family of
characteristics.

The structure of this paper is as follows. Definitions and main results are given in
Section 2, Section 3 contains proofs of these results. Brief conclusions and possible
applications form the last Section 4.
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2 Definitions and results

2.1 Definitions

Let us first describe what we mean by a numerical characteristic and what are the
reasonable invariance properties that such a characteristic should satisfy.

Definition 1. By a numerical characteristic of an interval (or simply characteris-
tic, for short), we mean a mapping m that maps each interval [x,X| into a number
m([x,x)).

First natural invariance property: shift-invariance. Numerical values of many
physical quantities — time, temperature, etc. — depend on the selection of the starting
point. When we replace the starting point with a new one which is a units earlier
or smaller, then to describe each physical quantity in the new units, we need to
add a to the previous value. For example, if we replace Celsius temperature scale
(C) with Kevin scale (K), then all the temperatures increase by 273.16: e.g., 20 C
becomes 293.16 K. It is reasonable to require that the selection of the representing
point should not change if we shift the starting point.
There are two possible interpretations of this requirement:

* the first interpretation is that if we add a to both endpoints, the new representing
value should be equal to the result of adding « to the original representing value;
this is known as covariance;

 the second interpretation is that if we add a to both endpoints, the representing
value should remain the same; this is known as invariance.

Let us describe these two options in precise terms.

Definition ShC. We say that a characteristic is shift-covariant (ShC, for short) if
for every interval [x,X] and for every two numbers a and x, once x = m([x,X]), then
x+a=m(jx+a,x+a]).

Definition Shl. We say that a characteristic is shift-invariant (Shil, for short) if for
every interval [x,X] and for every number a, we have m([x+ a,X + a]) = m([x,X]).

Comment. Following physics, in situations when there is no confusion, we will use
the term “invariance” to describe both invariances in the proper sense of this word —
and covariances as well.

Second natural invariance property: scale-invariance. Numerical values of a
physical quantity also depend on the choice of a measuring unit. If we change the
scale, i.e., if instead of the original measuring unit, we use a new unit which is ¢ >0
times smaller, then all the numerical values get multiplied by c. For example, if we
replace meters with centimeters, all numerical values are multiplied by 100: e.g.,
2 m becomes 200 cm. It is also reasonable to require that the characteristic either
does not change under such transformation or change similarly to all the values.
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Definition ScC. We say that a characteristic is scale-covariant (ScC, for short) if for
every interval [x,X] and for every two numbers ¢ > 0 and x, once x = m([x,X]), then
c-x=m([c-x,c-]).

Definition Scl. We say that a characteristic is scale-invariant (Scl, for short) if for
every interval [x,X] and for every number ¢ > 0, we have m([c - x, ¢ -X]) = m([x,X]).

Third natural invariance property: sign-invariance. Numerical values of some
quantities also depend on which direction we consider positive and which negative.
For example, if x is a coordinate, we can always change its orientation. If x is electric
current, we can call positive current negative and vice versa — nothing will change. In
this case, each original value x is replaced by the new value —x. It is also reasonable
to require that the representing point should not change under this transformation,
when we consider the interval [—X, —x] instead of the original interval [x,X].

Definition SiC. We say that a characteristic is sign-covariant (SiC, for short) if for
every interval [x,%], we have m([—%, —x]) = —m([x,%]).

Definition Sil. We say that a characteristic is sign-invariant (Sil, for short) if for
every interval [x,X], we have m([—%, —x]) = m([x,X]).

Possible invariance with respect to nonlinear transformations. So far, we have
considered transformations described by linear functions. In some cases, however,
we have several scales related by a non-linear transformation. For example, the en-
ergy of the signal can be described both in unusual energy units or in logarithmic
scale — in decibels. What if we consider covariance and invariance with respect to
all possible nonlinear transformations — as long as their are preserving the order,
i.e., as long as they are continuous and increasing. Under such transformation F(x),
an interval [x,X] gets transformed into [F(x), F (X))

Definition NC. We say that a characteristic is nonlinear-covariant (NC, for short) if
for every interval [x,X], for every continuous increasing function F (z), and for every
number x, once x = m([x,x]), then F (x) = m([F (x),F (%)]).

Definition NI. We say that a characteristic is nonlinear-invariant (NI, for short) if
for every interval [x,X] and for every continuous increasing function F(z), we have
m([F(x), F(x)]) = m([x,x]).

2.2 Results for the case when we have a single invariance

Proposition 1.

* A characteristic is ShC if and only if it has the form f(x — x) + x for some func-

tion f(x).

A characteristic is Shl if and only if it has the form f(Xx —x) for some func-
tion f(x).

* A characteristic is ScC if and only if it has the form fgon(x)(X/|x]) - [x| for some
Sunctions f_i(x) and fi(x).



Why midpoint, why radius (half-width), why color vision, why color optical computing 5

* A characteristic is Scl if and only if it has the form fgony)(X/|x|) for some func-
tions f—1(x) and fi(x).

e A characteristic is NC if and only if it returns one of endpoints of the interval,
i.e, XOrx.

* A characteristic is NI if and only if it ignores the input and always returns the
same constant C.

Comment. For sign-covariance and sign-invariance, there is no simplifying equiva-
lent form.

2.3 Results for the case when we have two invariances

First, we can show that we do not get any good results if we require both covariance
and invariance of the same type: either there are no characteristics that satisfy both
properties or the only such characteristic is a constant that does not depend on the
interval at all:

Proposition 2.

* ShC + Shil: no characteristic is both ShC and Shli.

* ScC + Scl: the only characteristic that is both ScC and Scl is m([x,X]) = 0 for
all intervals.

* SiC + Sil: the only characteristic that is both SiC and Sil is m([x,X]) = 0 for all
intervals.

Since we cannot meaningfully combine covariance and invariance of the same
type, we need to combine two different types:

Proposition 3. Here are the descriptions of all characteristics that satisfy two in-
variance properties:

e ShC + ScC: a-x+ (1 — ) - x for some a.
e ShC + Scl: no characteristic is both ShC and Scl.
e ShC + SiC: midpoint 0.5-x+40.5-%.
e ShC + Sil: no characteristic is both ShC and Sil.
o Shl + ScC: k- (X —x).
e Shl + Scl: a constant function.
e Shl + SiC: a function that always returns 0.
o Shl + Sil: f(Xx—x) for somefunction S(x).
s ScC + SiC: foign(x) (%/[x]) - |x
equalities for allz filz) =
o ScC + Sil: fion(x) (X/1x]) -
equalities for allz filz) =
)-lx
)=

(x) satisfy the following two

fa(=1/z)-zand f1(1/2) 2= —f-1(2).

where the functions f(x) satisfy the following two

)
“1(—1/z)-zand f1(1 /Z)) 2= f1(2).

, where the functions fi(x) satisfy the following two

fa(=1/z) and f1(1/2) = —f-1(2).

|x

e Scl + SiC: fsign (x) (x/|x|
equalities for all z: f1(z




6 N. Winnewisser et al.

o Scl + Sil: fon(x) (X/1x]) - x|, where the functions f+(x) satisfy the following two

equalities for all z: f1(2) = f-1(—1/z) and f-1(1/z) = f-1(2).

Comment. The value @ -X+ (1 — @) - x is known in decision theory, where it describes
decision under interval uncertainty. For decision purposed, this formula was first
derived by a Novelist Leo Hurwicz; see, e.g., [5,9, 11]. For « =0 and ot = 1, we
get endpoints of the interval; for oc = 0.5, we get the interval’s midpoint.

2.4 Results for the case when we have more than two invariances

Since we cannot have both covariance and invariance of the same type, and there
are exactly three different types of invariances — shift, scaling, and sign — the only
possibility to have more than two invariances is to have three invariances of three
different type:

Proposition 4. Here are the descriptions of all characteristics that satisfy more than
two invariance properties:

e ShC + ScC + SiC: midpoint 0.5-x+0.5-X.

e ShC + ScC + Sil: no characteristic has all these three invariances.
e ShC + Scl + SiC: no characteristic has all these three invariances.
e ShC + Scl + Sil: no characteristic has all these three invariances.
e Shl + ScC + SiC: a function that always returns 0.

o ShI + ScC + Sil: k- (X — x).

e Shl + Scl + SiC: a function that always returns 0.

e Shl + Scl + Sil: a constant function.

3 Proofs

3.1 Proof of Proposition 1

ShC: For a = —x, we get m([0,x — x]) = m([x,%]) —x. Thus, m([x,X]) = f(x—x) +x,
where we denoted f(x) &f m([0,x]).

ShI: For a = —x, we get m([0,% — x]) = m([x,X]). Thus, m([x,X]) = f(Xx —x), where
we denoted f(x) dgm([o,x]).

ScC: For ¢ = 1/|x|, we get

o ([signta)sien 2] ) = ).
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If we multiply both sides of this equality by |x|, we get the desired expression for
f-1(x) =m([=1,x]) and f1 (x) = m([1,x]).
Scl: For ¢ = 1/|x|, we get

o ([siento).siento)- 2] ) = ().

Thus, we get the desired expression for f_(x) = m([—1,x]) and f4(x) = m([1,x]).

NC: We can prove this by contradiction. If for some interval [x,%], the value x def
m([x,x]) is different from both endpoints, then we can always design a piece-wise
linear monotonic function F(z) for which F(x) = x, F(X) =X, but F(x) # x. For
this function, [F (x),F (%X)] = [x,X], so m([F (x),F (X)]) = m([x,X]) = x, but F(x) # x,
so the covariance condition is not satisfied. Thus, for any interval [x,%], we have
either m([x,%]) = x or m([x,X]) = X. If for some x, we have m([x,]) = x, then, since
every two intervals can be obtained from each other by a continuous increasing
linear transformation F(z), covariance implies that the same equality holds for all
the intervals.

NI: Since every two intervals can be obtained from each other by a continuous
increasing linear transformation F(z), invariance implies that the value m([x,X]) is
the same for all the intervals.

The Proposition is proven.

3.2 Proof of Proposition 2

ShC + ShI: In this case, for all @ # 0, we have both m([x+a,x+a|) = m([x,X]) +a
and m([x+a,X+da]) = m([x,X]). Thus, m([x,x]) + a = m([x,%]), i.e., a = 0 — but we
assumed that a # 0. This contradiction shows that this case is not possible.

ScC + ScI: In this case, for all ¢ > 0 and ¢ # 1, we have both m([c - x,c-X]) =
c-m([x,X]) and m([c- x,c-X]) = m([x,X]). Thus, c-m([x,X]) = m([x,X]). Since ¢ # 1,
this means that m([x,x]) = 0.

SiC + Sil: In this case, for every interval, we have both m([—x, —x]) = —m([x,])
and m([—%, —x]) = m([x,%]). Thus, —m([x,X]) = m([x,¥]) and thus, m([x,%]) = 0.

The proposition is proven.

3.3 Proof of Proposition 3

ShC + ScC: Since the characteristic is ShC, by Proposition 1, it has the form
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f(E—x)+x.
For this expression, scale-covariance means that
fleX—c-x)+c-x=c-f(x,x)+c-x.
For x =0and ¥ = 1, we get f(c) = & ¢, where we denoted o déff(l). Thus:

m([x,x]) = fx—x)+x=0-X—x)+x=a-x+ (1 -a)x.

ShC + ScI: Here, scale-invariance means that
fle-X—c-x))+e-x=f(%x)+x.

In particular, forx =0,% = 1, and ¢ = x, we get f(x) = f(1), so f(x) is a constant,
and the general ShC expression turns into f(1) + x. Substituting this expression into
the scale-invariance equality, we conclude that for any ¢ # 1, we have f(1)+c-x =
f(1)+x, ie., c-x=x. So, for x # 0, we get ¢ = 1 — but ¢ # 1. The contradiction
shows that this case is not possible.

ShC + SiC: Since the characteristic is ShC, by Proposition 1, it has the form

f(x—x) +x. For this expression, sign-covariance means that f(—x— (—%)) + (—X) =

—(f(x —x) +x). Here, —x — (—X) + (—X)— = X — x, so the above equality has the

form f(x —x) — X = —(f(x — x) — x). If we move all the terms containing f to the

left side and all the other terms to the right side, we get 2f(X — x) = X — x. Thus,
X—X

and thus,

ShC + Sil: Since the characteristic is ShC, by Proposition 1, it has the form
fx—x)+x
For this expression, sign-invariance means that
flx= () + (-0 = fF—) +x.

Similarly to the previous case, this implies that (X —x) —X = f(X—x) +x, i.e., that
—Xx = x for all intervals, but this is clearly not always true. This contradiction shows
that a characteristic cannot be both SkC and Sil.
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ShI + ScC: Since the characteristic is Shl, by Proposition 1, it has the form f (X — x).
For this expression, scale-covariance means that f(c-X—c-x) = ¢- f(x — x). For

x=0and X = 1, this implies that f(c) = k - ¢, where we denoted k Cléff(l).

ShI + ScI: Since the characteristic is ShI, by Proposition 1, it has the form f(x —x).
For this expression, scale-invariance means that f(c-X—c-x) = f(Xx —x). Forx =0
and X = 1, this implies that f(c) = f(1), i.e., that the function f(x) is simply a
constant not depending on the input.

ShI + SiC: Since the characteristic is Shl, by Proposition 1, it has the form f (X — x).
For this expression, sign-covariance means that f(—x — (—X)) = —f(X — x), hence
f(x—x) = —f(x—x) and thus, f(x—x) =0.

ShI + Sil: Since the characteristic is Sh/, by Proposition 1, it has the form f(¥ —x).
For this expression, sign-invariance means that f(—x — (—X)) = f(X¥ — x), hence
Ff(x—x) = f(x —x). This equality clearly holds for any function f(x).

ScC + SiC: When x > 0, then X > 0 and thus, the value of the characteristic has the
form fi(¥/x) - x. For the “minus-interval” [—X, —x], the value of the characteristic
is f_1(—x/X) - X. Thus, the SiC condition implies that f; (¥/x) -x = —f_1(—x/X) - X.
If we divide both sides of this equality by x and denote z % % /x, then this equality
takes a simplified form f(z) = —f-1(—1/2) - z.

When ¥ < 0, then the “minus-interval” [—X, —x] has positive lower bound, so we
get the same equality as when x > 0.

When x < 0 and X > 0, then we get f_; (x| /X) -X = —f_1(%/]x]) - |x]. If we divide

both sides of this equality by |x| and denote z &ef x/|x
simplified form f_(1/z) -z = —f_1(2).

ScC + Sil: When x > 0, then X > 0 and thus, the value of the characteristic has the
form fj(x/x) - x. For the minus-interval [—X, —x], the value of the characteristic is
f=1(—x/X) -X. Thus, the Sil condition implies that f; (X/x)-x = f_;(—x/X) -x. If we
divide both sides of this equality by x and denote z &l /x, then this equality takes a
simplified form fi(z) = f-1(—1/z) -z

When X < 0, then the minus-interval [—X, —x| has positive lower bound, so we
get the same equality as when x > 0.

When x < 0 and X > 0, then we get f_;(|x|/X) - X = f_1(%/|x]) - |x|. If we divide

both sides of this equality by |x| and denote z &f X/|x|, then this equality takes a
simplified form f_;(1/z) -z = f_1(z).
Scl + SiC: When x > 0, then X > 0 and thus, the value of the characteristic has
the form fj(X/x). For the minus-interval [—X, —x], the value of the characteristic
is f_1(—x/X). Thus, the SiC condition implies that fi(x/x) = —f_1(—x/X). If we
denote z & X/x, then this equality takes a simplified form fj(z) = —f—_;(—1/z).

When X < 0, then the minus-interval [—X, —x] has positive lower bound, so we
get the same equality as when x > 0.

When x < 0 and X > 0, then we get f_i(|x|/X) = —f_1(%/]x|). If we denote
z déff/ |x|, then this equality takes a simplified form f_;(1/z) = —f—1(2).

, then this equality takes a
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Scl + Sil: When x > 0, then X > 0 and thus, the value of the characteristic has
the form f;(X/x). For the minus-interval [—X, —x], the value of the characteristic is
f=1(—x/%). Thus, the Sil condition implies that f; (X/x) = f_; (—x/X). If we denote
z dgi/g, then this equality takes a simplified form f}(z) = f_1(—1/2).

When X < 0, then the minus-interval [—X, —x] has positive lower bound, so we

get the same equality as when x > 0.

When x < 0 and X > 0, then we get f_;(|x|/X) = f-1(x/|x|). If we denote z &f

X/ |x|, then this equality takes a simplified form f_{(1/z) = f_1(z).

3.4 Proof of Proposition 4

This proof directly follows from Proposition 3.

4 Conclusions and possible applications

Conclusions. As we can see, the only cases when invariance resulted in uniquely
determined characteristics — or at least in a finite-parametric family of characteristics
—are:

« either characteristics of the type a-X+ (1 — &) - x, for which special cases are left
endpoint, midpoint, and right endpoint,

* or characteristics of the type k- (X — x) which are proportional to the interval’s
radius (half-width).

So, invariance indeed justifies the empirical success of using these two classes of
characteristics.

Possible applications. The only three characteristics of an interval that are uniquely
determined by their invariance properties are the left endpoint, the right endpoint,
and the midpoint of the interval. So, if we have an interval and we want to select
a few meaningful points on this interval, these three are the points that we should
select.

This fact provides an explanation for why in many applications of fuzzy logic
(see, e.g., [1, 7, 14, 16, 17, 22]), to describe different possible values of a quantity,
we use three terms: small, medium, and large, which correspond exactly to, corre-
spondingly, being close to the left endpoint, being close to the midpoint, and being
close to the right endpoint.

This also explains why, from the whole interval of light frequencies correspond-
ing to the visible spectrum, evolution selected three specific wavelengths that we
perceive: red, green, and blue, which represent exactly the left endpoint, the mid-
point, and the right endpoint of this interval. It has been shown that by using this
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selection of basic colors and their combinations, we can effectively — and fast — per-
form analog computations, including computations related to fuzzy techniques; see,
e.g., [8, 12, 20, 21].
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