
Hypothetic Paraparticles and How They Can
Potentially Speed Up Computations

Sebastian Balderrama, Daniel Marin, and Vladik Kreinovich

Abstract While modern computers are fast, their speed is not sufficient for many
practical problems. Thus, we need faster computers. A significant part of compu-
tation time is spent of moving data from one location to the other – e.g., from a
memory cell to the processor. According to relativity theory, all communications are
limited by the speed of light – and computer communications are already close to
that limit speed. Thus, the only way to further speed up computations is to decrease
the size of a memory cell and of other components of a computer, The ultimate
decrease is when we use the smallest possible object as a memory cell – an elemen-
tary particle. For this purpose, we cannot use any of the known elementary particles,
since they have a single stable state – while to store a bit, we need an object with two
stable states that would represent 0 and 1. Recently, researchers came us with a sug-
gestion that there are elementary particles that have two stable states; such particles
are known as paraparticles. Thus, paraparticles can serve as bit-storing elements –
and so, their use can speed computations. In this paper, we show that paraparticles
can speed computations even further – namely, they may be able to help us solve
known NP-hard problems in feasible time.

1 Formulation of the problem

Modern computers are fast, but we need even faster computers. Modern com-
puters are fast, but there are many practical problems for which modern computers
are not fast enough. For example, modern computers can reasonably reliably predict
tomorrow’s weather. Such a prediction is based on solving the Navier-Stokes equa-

Sebastian Balderrama, Daniel Marin, and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: sbalderrama3@miners.utep.edu, djmarin1@miners.utep.edu,
vladik@utep.edu

1



2 Sebastian Balderrama, Daniel Marin, and Vladik Kreinovich

tions describing all atmospheric phenomena. The corresponding computations take
several hours on a high-performance computer.

The same equations describe not only regular weather situations, they also de-
scribe extreme atmospheric effects like tornadoes. In principle, in case of tornadoes,
we can use the same algorithms to solve these equations, and predict the direction
in which a tornado will move in the next 15 minutes. The problem is that tornadoes
are much faster than the usual atmospheric phenomena – this is, by the way, why
tornadoes are so dangerous and why they cause so much destruction. As a result,
the same relative change that takes a day or so for the usual weather, for a tor-
nado, happens in 15 minutes. Because of this, predicting where a tornado is going
in 15 minutes takes as much computation time as predicting tomorrow’s weather –
which is several hours on a high-performance computer. For predicting tomorrow’s
weather, several hours of computation make sense. However, for predicting where
a tornado will go in the next 15 minutes, the hours-long prediction makes no sense:
we will “predict” way after the tornado has already moved. To predict the dynamics
of a tornado, we therefore need faster computers.

How can we make computers faster? One of the main factors that limits computer
speed is computer size. For example, the size of a usual laptop is about 30 cm. If
we divide this size by the speed of the fastest possible process – speed of light c =
300 000 km/sec, we conclude that we need at least 1 nanosecond for a signal to
travel from one location on a computer to another. During this time, the usual 4
GHz laptop already performs 4 computational steps. So, to make computers faster,
we need to make them smaller.

Next step – quantum computing. To make computers smaller means, in particu-
lar, to make every bit-storing element in a computer memory smaller. Already such
elements contain a relatively small number of atoms – hundreds or thousands. Re-
ducing the size even further will lead to elements consisting of a few atoms – or
even of a single atom. This will bring us into the microworld, where all the physical
processes follow quantum physics (and not the usual Newtonian physics). Thus, we
need computing under quantum conditions, i.e., quantum computing; see, e.g., [3].

What next? Suppose that we have managed to reduce the size of a bit-storing el-
ement to a single atom. What next? Atoms consist of elementary particles, so a
natural idea seems to be to use elementary particles as bit-storing elements. (And,
by the way, there is nothing beyond elementary particles, so this will be the final
size reduction.)

But how can we use elementary particles as bit-storing elements? A usual way
to store a bit is to have an element that has two (or more) stable states, i.e., states
with the smallest possible energy. One of these states represents 0, another stable
state represent one. However, all known elementary particles have a single stable
state, i.e., the state with the smallest possible energy; see, e.g., [1, 5]. So what can
we do?

Paraparticles and how they can help. Recently, researchers raised the possibility
of having particle that have two different minimum-energy states; these particles



Paraparticles Can Potentially Speed Up Computations 3

are called paraparticles [6, 7]. The two-stable-states feature makes paraparticles a
perfect tools for storing one bit of information. If we can use only one elementary
particle to store a bit (instead of several molecules), that will make computers dras-
tically smaller and thus, faster.

What else can do with paraparticles computation-wise. Paraparticles are a next
step after quantum computing. Quantum computing started with the goal to decrease
the size of computational devices. However, later on, it turned out that with quantum
elements, we can achieve additional speed up (see, e.g., [3]); for example:

• in a quantum-based computer, we can search in an unsorted n-element array in
time proportional to

√
n – while without quantum effects, we cannot guarantee

fewer than n steps – otherwise we do not check at least one of the elements and
this unchecked element may be the desired one;

• spectacularly, quantum computer are, potentially, able to efficiently factor large
integers and thus, decode all currently encrypted messages – whose security is
based on the fact that without quantum computers, no efficient factoring method
is known.

These successes prompt a natural question: how else can we speed up computing if
we use paraparticles?

What we do in this paper. In this paper, we show that, similarly to quantum com-
puting, paraparticles have the potential to further speed up computations: namely,
they may be able to solve NP-hard problems in feasible time.

The structure of the paper. We start, in Section 2, with a brief reminder of what are
NP-hard problems and why they are important. After that, in Section 3, we describe
how paraparticles may be able to solve NP-hard problems in reasonable time.

2 NP-hard problems: a brief reminder

In this section, we will briefly follow the usual description of NP-hardness; see [2, 4]
for details.

What is feasible and what is not feasible. The usual description of NP-hard prob-
lems starts with describing which algorithms are feasible and which are not feasible.
Some algorithms are practically useful – we can them feasible. Other algorithms
require, for reasonable-size inputs, time which is larger than the lifetime of the Uni-
verse.

For example, one way to find a length-n sequence of 0s and 1s that has the de-
sired property is to try all possible binary sequences of length n. However, there
are 2n such sequences, so already for n = 500, this algorithm requires 2500 ≈ 10150

computational steps. This is not realistic. Even if each of the 1090 particles in the
Universe is used as a computational devices, and each of them performs each com-
putational step as fast as possible – during the time when light passes through the



4 Sebastian Balderrama, Daniel Marin, and Vladik Kreinovich

smallest elementary particle – the overall computation time will be several orders of
magnitude longer than the lifetime of our Universe – which is about 10-20 billion
years,

In practice, most algorithms whose running time is limited by some polynomial
P(n) of the input length n are feasible – and vice versa, the running time of most
known feasible algorithms is bounded by some polynomial. Thus, usually, feasibil-
ity is defined as having such a polynomial upper bound on computation time.

This is not a perfect definition: some polynomial-time algorithms are not prac-
tically feasible and, vice versa, the running time of some practically feasible algo-
rithms are not bounded by a polynomial. However, such cases are rare and, in any
case, this is the best definition of feasible that we have so far.

What problems are we solving? In science and engineering, we usually solve well-
formulated problems, i.e., problems for which, once someone comes up with a can-
didate for a solution, we can check, in feasible (polynomial) time, whether it is
indeed a solution. Finding a solution may be difficult. For example, in mathematics,
it sometimes takes hundreds of year to find a proof of a hypothesis – but once a
detailed proof is given, it is relatively straightforward to check its correctness. In
engineering, once we have a design of, e.g., a bridge, it is relatively easy to simulate
different loads and thus confirm that the bridge satisfies all the specification – but
coming up with such a design can be difficult.

In other words, if we guess a solution, then we can feasibly check that our guess
is a solution. In computer science, “algorithms” that include guessing are called
non-deterministic. Because of this, such problems – for which checking is feasible
– are known as Non-deterministic Polynomial, NP for short.

What is NP-hard? Can we solve all NP problems in feasible time? The class of all
problems that can be solved in feasible (polynomial) time is usually denoted by P.
In these terms, the above question takes the form: is P equal to NP? This is a known
open problem. Most computer scientists believe that classes P and NP are different
– i.e., that there are problems from the class NP that cannot be solved in feasible
time – but no one has proved it so far.

What is known, however, is that in the class NP, there are problems which are
as hard as possible – in the sense that all other problems from the class NP can
be feasibly reduced to such “hard” problems. These problems are called NP-hard.
Such problems are most probably not feasible – otherwise, if there existed a feasible
algorithm for solving such a problem, then, by using reduction, we could solve all
the problems from the class NP in polynomial time and we would thus get P = NP
– while, as we have mentioned, most computer scientists believe that P ̸= NP.

An example of an NP-hard problem. There are many examples of problems whose
NP-hardness have been proven. In this paper, we will use one such example: the
subset sum problem.

In this problem, we are given a list of natural numbers s1, . . . ,sn and a natural
number s, and we need to find a subset S ⊆ {1, . . . ,n} over which the sum of si’s is
equal to s. This is equivalent to finding xi ∈ {0,1} for which



Paraparticles Can Potentially Speed Up Computations 5

∑
i

xi · si = s.

How do we usually prove that a new problem is NP-hard. A usual way to prove
that a new problem is NP-hard is to prove that one of the known NP-hard problems
can be feasibly reduced to this new problem. Indeed, by definition of NP-hardness,
each problem form the class NP can be feasibly reduced to the known problem, and
– since the known problem can reduced to the known one, we can conclude that
every problem from the class NP can be feasibly reduced to the new problem as
well. This means exactly that the new problem is NP-hard.

Now we are ready to argue that paraparticles can help us solve NP-hard problems
in feasible time.

3 Back to paraparticle

How can we describe paraparticles in precise terms? We know that parapartciles
have two different states with the smallest possible value of energy.

We do not know the exact equations describing the paraparticle’s energy, it can
be any analytical function. In such situations, to get a first approximation to the
particle’s description, it is reasonable to restrict the general Taylor expansion of the
energy function to the first few terms – as long as that allow to explain the basic
behavior of the particle. This is a usual strategy in physics; see, e.g., [1, 5].

For many physical systems – such as a pendulum – the first approximation comes
from consider quadratic terms. To find the minimum-energy state, we can differen-
tiate the energy function with respect to all unknowns and equate all the resulting
derivatives to 0. Differentiating a quadratic function leads to a linear expression, so
we get a system of linear equations. Such systems either have a unique solution, or
the whole linear space of solutions – but they cannot have just two solutions. So, to
describe paraparticles, we need to go beyond quadratic terms.

The next after quadratic are cubic terms. However, a cubic polynomial cannot
have a global minimum: in some directions, it reaches infinity and thus, in opposite
directions, it tends to −∞. Thus, to describe paraparticles, we need to also take into
account the next order terms – i.e., we need to consider 4th order polynomials.

How this can help to solve NP-hard problems. An interesting feature of 4th order
polynomials is that for them, finding a global minimum is NP-hard (see proof in the
next subsection). So, in general, finding the minimum-energy state of a paraparticle
is probably an NP-hard problem. A particle, left to itself, reaches its minimum-
energy state – and usually does it fast. So by observing hypothetic paraparticles, we
may be able to find, in short time, solutions to an NP-hard problem. By definition,
NP-hardness means that we can reduce any problem from the class NP to this prob-
lem in feasible time. Thus, paraparticles may lead to feasible algorithms may lead



6 Sebastian Balderrama, Daniel Marin, and Vladik Kreinovich

to a feasible way of solving all the problems from the class NP – i.e., in effect, to
solution of all the problems in mathematics, physics, and engineering!
How to prove that minimizing 4th order polynomials is NP-hard. We can prove
this by reducing, to this problem, the known NP-hard subset sum problem: we have
a list of natural numbers s1, . . . ,sn and a natural number s, and we need to find a
subset S ⊆ {1, . . . ,n} over which the sum of si’s is equal to s. This is equivalent to
finding xi ∈ {0,1} for which

∑
i

xi · si = s.

For each instance of this problem, let us form the following 4th order polynomial:

∑
i
(xi · (1− xi))

2 +

(
∑

i
xi · si − s

)2

.

This polynomial is always non-negative, and its minimum is equal to 0 if and only
if all the terms in the sum are 0s. In particular, this means that xi · (1− xi) = 0 (so
either xi = 0 or 1− xi = 0, i.e., xi = 1) and

∑
i

xi · si = s.

So, if we could minimize this polynomial, we would be able to solve the subset
sum problem. This reduction proves that the above minimization problem is also
NP-hard.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395 (Center for Collective Impact in Earthquake Science C-CIES), and by the
AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research, De-
velopment and Innovation Office (NRDI), by the Institute for Risk and Reliability,
Leibniz Universitaet Hannover, Germany, and by the European Union under the
project ROBOPROX (No. CZ.02.01.01/00/22 008/0004590).

References

1. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison Wesley,
Boston, Massachusetts, 2005.



Paraparticles Can Potentially Speed Up Computations 7

2. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility of
Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.

3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, Cambridge, U.K., 2011.

4. C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994.
5. K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Fluids, Plasmas, Elastic-

ity, Relativity, and Statistical Physics, Princeton University Press, Princeton, New Jersey, 2021.
6. Z. Wang and K. R. A. Hazzard, “Particle exchange statistics beyond fermions and bosins”,

Nature, 2025, Vol. 639, pp. 314–318.
7. K. Wright, “Strange swapping behavior defines new particle candidate”, Physics, 2025, Vol. 18,

Paper 11.


