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Abstract In principle, there can be many different characteristics of classification
quality. However, in practice, mostly the following three characteristics are used:
precision, recall, and accuracy – as well as their combinations like F1. In this paper,
we use the basic decision theory to explain why these three characteristics are most
frequently used.

1 Formulation of the problem

Need to gauge the quality of classification methods. Classification methods are
often not perfect. In addition to true positive (T P) and true negative (T N) cases, we
also have false positive (FP) and false negative (FN) cases. To gauge the quality of
a classification method, we need to take into account the numbers of all these four
categories.

How this quality is gauged. In principle, we can have many different combina-
tions of these four numbers. Empirically, the following three combinations are most
frequently used (see, e.g., [3]):

• precision

P =
T P

T P+FP
,

• recall
R =

T P
T P+FN

,
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• and accuracy

A =
T P+T N

T P+T N +FP+FN
.

Also, the following combination of these characteristics is frequently used:

F1 =
P ·R

P+R
.

A natural question. Why these characteristics and not others?

What we do in this paper. In this paper, we explain why these characteristics are
used.

2 Analysis of the problem

General idea. Each correct classification brings benefits, each false classification
brings losses. According to decision theiory, the method should be applied if the
benefits are larger than the losses; see, e.g., [1, 2, 4, 5, 6, 7, 8].

Benefits: possible cases. With respect to benefits:

• sometimes, benefits bT P and bT N of TP and TN are similar, and
• sometimes, one of them brings more benefits.

For example:

• detecting cancer may save a life, while
• correctly identifying a non-cancerous tumor simply saves a patient from a few

further procedures.

In principle, we could have three cases:

• the case when bT P ≈ bT N ,
• the case when bT P ≫ bT N , and
• the case when bT N ≫ bT P.

Let us simplify the situation. If T N brings more benefits, we can simply rename
negative to positive. So, without losing generality, we can say that we have two
cases:

• case when bT P ≈ bT N , and
• case when bT P ≫ bT N .

In the first approximation, when we ignore small numbers and small differences:

• the first case means bT P = bT N , and
• the second case means bT P > 0 and bT N = 0.
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Losses: possible cases. Similarly, for losses, in the first approximation, we can con-
sider three possible cases:

• the case when ℓFP = ℓFN ,
• the case when ℓFP > 0 and ℓFN = 0, and
• the case when ℓFN > 0 and ℓFP = 0.

What we plan to do. We have two possible cases for benefits; for each of them, we
have three possible cases for losses. Thus, we have 2×3 = 6 possible situations. Let
us start considering these situations one by one.

3 Why precision: an explanation

The case. Let us first consider the case when:

• for benefits, we have bT P > 0 and bT N = 0, and
• for losses, we have ℓFP > 0 and ℓFN = 0.

Analysis of this case. In this case, the method is beneficial if bT P ·T P > ℓFP ·FP,
i.e., equivalently, when

r1
def
=

T P
FP

>
ℓFP

bT P
.

The larger the ratio r1, the more cases when this method is useful. So, the quality of
the method is larger if the ratio r1 is larger.

Alternatively, we can take any strictly increasing function of r1. For example, we
can take a strictly increasing function

1
1+1/r1

.

Applying this function to

r1 =
T P
FP

,

we get exactly the precision.
This explains why precision is used.

4 Why recall: an explanation

The case. Let us now consider the case when:

• for benefits, we have bT P > 0 and bT N = 0, and
• for losses, we have ℓFN > 0 and ℓFP = 0.
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Analysis of this case. In this case, the method is beneficial if bT P ·T P > ℓFN ·FN,
i.e., equivalently, when

r2
def
=

T P
FN

>
ℓFN

bT P
.

The larger the ratio r2, the more cases when this method is useful. So, the quality of
the method is larger if the ratio r2 is larger.

Alternatively, we can take any strictly increasing function of r2. For example, we
can take a strictly increasing function

1
1+1/r2

.

Applying this function to

r2 =
T P
FN

,

we get exactly the recall.

5 Why accuracy: an explanation

The case. Let us now consider the case when:

• for benefits, we have bT P = bT N , and
• for losses, we have ℓFP = ℓFN .

Analysis of this case. In this case, the method is beneficial if

bT P ·T P+bT N ·T N > ℓFP ·FP+ ℓFN ·FN.

Since bT P = bT N and ℓFP = ℓFN , this inequality is equivalent to

bT P · (T P+T N)> ℓFP · (FP+FN),

i.e., equivalently, to

r3
def
=

T P+T N
T P+T N +FP+FN

>
ℓFP

bT P
.

The larger the ratio r3, the more cases when this method is useful. So, the quality of
the method is larger if the ratio r3 is larger.

Alternatively, we can take any strictly increasing function of r3. For example, we
can take a strictly increasing function

1
1+1/r3

.

Applying this function to
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r3 =
T P+T N
FP+FN

,

we get exactly the accuracy.

6 Why only these three?

Natural question. In general, we can have many different characteristics, so why
only there three are used – as well as characteristics like F1 that are obtained by
combining these three major characteristics?

Our answer to this question. Our answer is that all possible decision-related char-
acteristics can indeed be obtained as a combination of the basic three ones.

Indeed, for general values of benefits and losses, the method is effective if

bT P ·T P+bT N ·T N > ℓFP ·FP+ ℓFN ·FN.

If we divide both sides by T P, we get an equivalent inequality

bT P +bT N · T N
T P

> ℓFP ·
FP
T P

+ ℓFN · FN
T P

with three unknown ratios

R1
def
=

FP
T P

, R2
def
=

FN
T P

, and R3
def
=

T N
T P

.

One can check that, by dividing both the numerator and the denominator of the
expressions for P, R, and A by T P, that these three basic characteristics P, R, and A
depend only on these three ratios:

P =
1

1+R1
, R =

1
1+R2

, and A =
1+R3

1+R1 +R2 +R3
.

Thus, when we know the values of P, R, and A, we have 3 equations from which we
can determine all three unknown ratios:

R1 =
1
P
−1, R2 =

1
A
−1, and R3 =

A · (R1 +R2 +1)−1
1−A

.

Hence, once we know P, R, and A, we will be able to predict, for each combination
of benefits and losses, whether this method is applicable.

So, the three characteristics are indeed sufficient – all other characteristics can be
described in terms of these three, just like F1 can be.
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