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Abstract One of the most important techniques in deep learning applications is the
attention technique. In this paper, we provide a theoretical explanation for the main
empirical formula of attention.

1 Formulation of the problem

Why machine learning and why attention. In the last decades, a significant
progress has been achieved in applying neural-network-based techniques (see, e.g.,
[2]) to numerous application areas — in particular, to control of technological pro-
cesses. In particular, lately, this has been one of the main direction of Professor
Yusupbekov’s research [6, 7, 8, 9, 10, 11].

Several major ideas has led to the current success of neural networks. One of
these idea is the idea of using attention techniques; see, e.g. [4]. In this paper. we
provide a theoretical explanation for the empirical formulas underlying the success
of attention techniques.

Classification: one of main applications of machine learning. In many practical
situations, we want to classify objects into classes. For example, we want to classify
pictures of pets into picture of cats and picture of dogs.
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In a computer, each object i is described by a vector x; = (x; 1, ..., X; ;) consisting
of this object’s numerical characteristics. For example, a picture can be described
by intensities of different colors at different pixels.

Based to the given object —i.e., based on the given vector x; describing this object
— we need to classify this object. Machine learning approach to the classification
problem is that:

* we train the machine learning tool — e.g., a neural network — on several examples
of objects for which classification is known, and
* we hope that after training, this tool will be able to correctly classify all objects.

One of main difficulties. One of the difficulties is that objects within some classes
are very different. For example, dogs can be large and small, of different breeds, etc.

Attention is a way to overcome this difficulty. To make classification task easier,
it is desirable: to replace each specific vector x; with a weighted average
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of all the objects x; which are similar to x;. This way, the role of individual char-
acteristics — that distinguish objects within the same class — will diminish, and the
classification task will become easier.

Attention is a technical term for implementing this natural idea.

Comment. Recent research [5] has shown that a similar mechanism is also present
in our brains, when we ourselves learn:

 signals from similar objects get routed to neighboring neurons, and
¢ neighboring neurons influence each other, thus “averaging” the effect of similar
objects.

How to describe similarity. To implement the above idea, we need to describe, in
precise terms, what it means for objects to be similar.

A natural way to describe similarity between the objects x; and x; is to use the
usual Euclidean metric

d(a,b) = Z(ak—bk)z.
k

The smaller this distance, the more similar the two objects — and thus, larger should
be the weight. So, we must have w;; ~ f(d(x;,x;)) for some decreasing func-
tion f(z).

The sum of the weights should be equal to 1, so we must have
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Let us simplify this expression. The expression (1) can be simplified if we take

into account that overall, the values x;; are reasonably random. In this case, for large

N, the arithmetic average of the values x%k is close to its limit value m — i.e., to the

mathematical expectation of this random quantity; see, e.g., [3]:

2 2
X+ Xy def
N
Thus, we have
def
xl-2 :xil +...+xl-27N%C =N-m.
It is easy to check that dz(xi,xj) = )ci2 +x§ —2x;-xj = 2C —2x; - xj, where x; - x;
denotes the usual scalar (dot) product of the two vectors:

def
XiXj =Xi1 Xj1+...+XiN"XjN-

So, a decreasing function of d(x;,x;) can be described as an increasing function of
the dot product x; - x;:

fd(xi,xj)) = F(xi - x;),

where we denoted

Fio) ¥ r (\/ZC—ZZ) .
Thus, we arrive at the following formula:

- F(x,--xj)
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Yo F(xi-xp)

for some increasing function F(z).

(2)

Which function F(z) should we use? Empirical evidence shows that out of all
increasing functions F(z), functions F(z) = exp(c - z) work the best.

A natural question: How can we explain this empirical fact?

What we do in this paper. In this paper, we provide a theoretical explanation for
this empirical fact.

2 Our explanation

The main idea behind our explanation. Our explanation is based on the fact that
the values x; ; come from measurements, and measurements are never absolutely
accuract: there is always some noise affecting the measurement results. So, a natural
requirement is that the resulting values y; should be affected by the noise as little as
possible.
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Let us formulate this requirement in precise terms. What if we replace the orig-
inal values x; ; with noisy values X;x = x; ¢ + n; x for some noise n; ; with 0 mean?
Then the dot product X; - X; becomes x; - x; +x; -1 +n; - x; +n; - n;.

The expected value of terms x; - n; is 0, so the only non-zero addition to the dot
product is the term E[n; - n;]. Let us estimate this expected value.

If the noise is local — i.e., if noises corresponding to two objects x; and x; are
independent — then the expected value of the noises’ product is equal to the product
of their expected values, i.e., to 0:

E[l’l,“nj} ZE[I’Z“ ‘1 —&—...—|—n,~’N-nj,N} ZE[VZ,'J -nj,l}—k...—l—E[ni,N-nj,N] =

E[l’lm} -E[I’lﬂl] +... —l—E[}’ti’N} 'E[I’ljﬁ[\/} =0.

However, other, the noise has a global component with mean square value M, i.e.,
a component that affects all the measurements. In this case, E[n;-n;] = M. Thus, due
to the noise, all dot products are increased by the same constant M.

So, the above requirement takes the following form: we want to find the function
F(v) for which adding a constant M to all the dot products would not change the
weights.

Which functions F(z) satisfy this requirement? For two objects, the above re-
quirement means that for all a, b, and M we should have:

F(a+M) F(a)

FlatM)+F(b+M) F(a)+F(b) (3)

If we apply 1/z to both sides of this equality and subtract 1 from both sides, we get

F(b+M) F(b)

F(a+M) F(a) 4)

Multiplying both sides by
F(a+M)
F(b) -
we get
F(b+M) F(a+M)

Fo)  Fla) ®)

This equality holds for all @ and b. So, the ratio

F(a+M)
F(a)

does not depend on a, it only depends on M:

F(a+M)

Fla =800 ©)
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for some function g(M). Thus,
F(a+M)=g(M)-F(a). (7)

It is known (see, e.g., [1]; see also a comment below) that the only increasing solu-
tion to this functional equation is

F(a) =c-exp(a-a). (8)

So, we get the desired explanation. From the viewpoint of the weights w; ; — as
described by the formula (2) — the use of the function (8) is equivalent to using the
function

F(a) =exp(a-a). 9)

This is exactly what we needed to explain.

Comment: how to solve the above functional equation. To solve the above functional
equation, let us differentiate both sides by M and take M = 0. Then, we get

F'(a) =¢'(0)-F(a),

with o & £'(0), e,

dF

—=a-F. 10

P (10)
Dividing both sides by F' and multiplying both sides by da, we get

dF

— =oa-da. (11)

F

We can now integrate both sides, and get
In(F) = o - a+ const. (12)
Now, we can apply the function exp(z) to both sides, and get

F(a) = const-exp(o-a).
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