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Abstract Chaos systems are ubiquitous. In particular, chaotic behavior can be ob-
served in finances. This phenomenon was first discovered in 1993 on the example
of an empirical model that described the dynamics of fluctuating exchange rates. In
this paper, we provide a from-first-principles derivation of this empirical model.

1 Formulation of the problem

Chaotic systems are ubiquitous. Many real-life phenomena show chaotic behavior
– when:

• the corresponding dynamical systems are largely deterministic, but
• due to the systems’ complexity, we can only make probabilistic long-term pre-

dictions.

Chaotic behavior can also be observed in finance. Finance is one of the areas
where chaotic behavior has been observed; see, e.g., [3, 4, 5, 6]. Applications of
chaos theory to finance started with a pioneering 1993 book [2] that showed, in
particular, that chaotic behavior can be observed in the dynamics of exchange rates
St when this dynamics is described by an empirical formula

St+1 = ct ·Sα0
t ·Sα1

t−1, (1)
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where ct are behavioral variables that affect the exchange rates.

Comment. If we take logarithms of both sides of the equality (1), we get linear
regression:

ln(St+1) = ln(ct)+α0 · ln(St)+α1 · ln(St−1).

A natural question: how can we explain the chaos-related empirical model (1) for
the dynamics of exchange rates?

What we do in this paper. In this paper, we provide the from-first-principles deriva-
tion of the formula (1).

2 Analysis of the problem

What we want. We want to predict the exchange rate St+1 at the next moment
of time based on the current exchange rate St and on the past exchange rates
St−1, . . . ,St−k.

Ideal case. In the ideal deterministic case, the future value xt+1 of a quantity x is
uniquely determined by its current value xt and its past values xt−1 . . . ,xt−k. In this
case, the only thing we need to do to predict the future values is to find a function
xt+1 = f (xt ,xt−1, . . . ,xt−k) that best describes the corresponding dynamics.

Specifics of predicting exchange rate. Of course, for exchange rates, even when
we have all the previous values of the exchange rate – and even all possible infor-
mation about the given country’s economy – we cannot uniquely predict the future
exchange rate. Indeed, the future exchange rate also depends on the fluctuations of
the currency to which we are comparing the analyzed currency – be it US Dollar or
European Union’s Euro; and these fluctuations cannot be predicted based only on
the given country’s economy.

When the value of the compared-to currency decreases by a factor of c, then
the exchange rate between the analyzed country’s currency and the compared-to
currency is multiplied by c. Thus, in this case, we cannot have a single prediction
function f (xt ,xt−1, . . . ,xt−k), we can only have a family of prediction functions

{c · f (xt ,xt−1, . . . ,xt−k)}c.

So, the question is: which of such families should we select?

Comment: this does not mean that predictions are impossible. The fact that we can-
not predict the future exchange rate does not mean that the formulas – like the
formula (1) – are useless. Indeed, the coefficient c is the same for all the countries
with similar – and related – economies. Thus:

• while we cannot predict the exchange rate of a single country,
• we can predict the ratio of the exchange rates of two similar countries.
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Let us take into account that we can use different compared-to currencies. We
have exchange rates with respect to US dollar, with respect to Euro, with respect to
Japanese Yen, etc. It is therefore desirable to have a family of functions that should
be useful for predicting all these different exchange rates.

Let us describe this requirement in precise terms. Suppose that we have a family
of functions that describes the dynamics of the exchange rate with respect to US
Dollar. For this family, for each moment of time t, we should have

St+1 = ct · f (St ,St−1, . . . ,St−k). (2)

Suppose now that instead of comparing the analyzed currency with US Dollars, we
compare it with Euros (or with Japanese Yen). To get an exchange rate between the
analyzed currency and Euros, we need to multiply two values: the exchange rate
between the analyzed currency and US Dollar, and the exchange Ct rate between
US Dollar and the new compared-to-currency:

S′t
def
=

analyzed currency
Euro

=
analyzed currency

US Dollar
· US Dollar

Euro
= St ·Ct .

We consider the case when the relation between the two compared-to currencies is
reasonably stable. In this case, all the values Ci are around some constant C, with
relative difference from C not exceeding some small number ε > 0:

1− ε ≤ Ci

C
≤ 1+ ε. (3)

In this case, for the new exchange rates S′t , we should have a similar dependence

S′t+1 = c′t · f (S′t ,S
′
t−1, . . . ,S

′
t−k), (4)

for some value c′t .
As we have mentioned, the formula (2) holds not only for the given country, but

for all the countries with a similar economy. Similarly, the formula (4) should be
valid for all these countries – which means that the value c′t should depend only on
the two compared-to currencies, but NOT on the present and past exchange rates
specific for each of the analyzed countries.

Now, we are ready to describe this requirement in precise terms.

3 Definitions and the main result

Definition 1. Let k ≥ 0 be a natural number. By a k-prediction function, we mean a
measurable function f (St ,St−1, . . .St−k).

Definition 2. We say that a prediction function f (St ,St−1, . . .St−k) is consistent if
there exists a positive number ε > 0 such that for every tuple
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(ct ,C,Ct+1,Ct ,Ct−1, . . . ,Ct−k)

that satisfies the condition (3), there exists a value c′t for which:

• once we have values Si that satisfy the equality (2),
• then the values S′i =Ci ·Si satisfy the equality (4).

Proposition. A prediction function is consistent if and only if it has the form

f (St ,St−1, . . . ,St−k) = α ·Sα0
t ·Sα1

t−1 · . . .S
αk
t−k. (5)

Discussion. In particular, for k = 1, we get the desired theoretical explanation for
the above-mentioned empirical model. For k > 1, we get a natural extension of
this model to the case when we take into account that the exchange rate may also
dependent on the exchange rate a year ago.

Similarly to the case k = 1, if we take logarithms of both sides of the equality
(1), we get a linear regression:

ln(St+1) = ln(α)+α0 · ln(St)+α1 · ln(St−1)+ . . .+αk · ln(St−k).

Proof.

1◦. It is easy to prove that every prediction function of type (5) is consistent.

Indeed, in this case, the equality (2) takes the form

St+1 = ct ·α ·Sα0
t ·Sα1

t−1 · . . .S
αk
t−k, (6)

while the desired equality (4) takes the following form:

S′t+1 = c′t ·α · (S′t)α0 · (S′t−1)
α1 · . . .(S′t−k)

αk . (7)

Substituting the expression S′i =Ci ·Si into the formula (7), we get

Ct+1 ·St+1 = c′t ·α · (Ct ·St)
α0 · (Ct−1 ·St−1)

α1 · . . .(Ct−k ·St−k)
αk . (8)

Here, (Ci · Si)
αi = Cαi

i · Sαi
i . Substituting these expressions into the formula (8) and

placing together all the terms proportional to the powers of Si, we conclude that

Ct+1 ·St+1 = c′t ·α ·C′ ·Sα0
t ·Sα1

t−1 · . . .S
αk
t−k, (9)

where we denoted C′ def
= Cα0

t ·Cα1
t−1 · . . . ·C

αk
t−k. Thus, the desired formula (4) is equiv-

alent to

St+1 =
c′t

Ct+1
·α ·C′ ·Sα0

t ·Sα1
t−1 · . . .S

αk
t−k. (10)
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The desired equality (10) turns into known equality (6) when

c′t
Ct+1

·C′ = ct ,

i.e., when we take

c′t =
Ct+1 · ct

C′ .

So, for this c′t , (2) indeed implied (4).

2◦. Let us prove that, vice versa, every consistent prediction function has the
form (5).

Indeed, for C = 1, substituting S′i =Ci ·Si into the formula (4), we conclude that

Ct+1 ·St+1 = c′t · f (Ct ·St ,Ct−1 ·St−1, . . . ,Ct−k ·St−k). (11)

Substituting the expression (2) for St+1 into the formula (11), we conclude that

Ct+1 · ct · f (St ,St−1, . . . ,St−k) = c′t · f (Ct ·St ,Ct−1 ·St−1, . . . ,Ct−k ·St−k), (12)

i.e., equivalently, that

f (Ct ·St ,Ct−1 ·St−1, . . . ,Ct−k ·St−k) =

g(ct ,Ct+1,Ct , . . . ,Ct−k) · f (St ,St−1, . . . ,St−k), (13)

where we denoted

g(ct ,Ct+1,Ct , . . . ,Ct−k)
def
=

Ct+1

c′t(ct ,Ct , . . . ,Ct−k)
.

The formula (13) only holds for the values Ci for which 1− ε ≤ Ci ≤ 1+ ε.
However, if we have C′′

i =C′
i ·Ci, where 1−ε ≤Ci,C′

i ≤ 1+ε , then we get a similar
equality:

f (C′
t · (Ct ·St),C′

t−1 · (Ct−1 ·St−1), . . . ,C′
t−k · (Ct−k ·St−k)) =

g(ct ,C′
t+1,C

′
t , . . . ,C

′
t−k) · f (Ct ·St ,Ct−1 ·St−1, . . . ,Ct−k ·St−k). (14)

Substituting the expression (13) into the right-hand side of the formula (14), we get

f (C′′
t ·St ,C′′

t−1 ·St−1, . . . ,C′′
t−k ·St−k) =

g(ct ,C′′
t+1,C

′′
t , . . . ,C

′′
t−k) · f (St ,St−1, . . . ,St−k), (15)

where we denoted
g(ct ,C′′

t+1,C
′′
t , . . . ,C

′′
t−k)

def
=

g(ct ,C′
t+1,C

′
t , . . . ,C

′
t−k) ·g(ct ,Ct+1,Ct , . . . ,Ct−k). (16)
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In other words, we can have a similar formula (13) not only for the tuple of values
Ci between 1− ε and 1+ ε , but also for componentwise products of such tuples.

Similarly, we can the same result (13) for componentwise product of any finite
number of such tuples. For each positive number Ci, the value C1/n

i tends to C0
i = 1

when n tends to infinity. Thus, for any tuple of positive numbers, and for sufficiently
large n, we have 1− ε ≤C1/n

i ≤ 1+ ε for all i. For the resulting tuple of n-th order
roots, we can get the formula (13) and thus, we can get it for the componentwise
product of n such tuples – i.e., to the original tuple of the values Ci.

So, the equality (13) holds for all possible positive tuples Si and Ci. And it is
known (see, e.g., [1]) that all measurable functions that satisfy the equality (13) for
all positive tuples have the form (5).

The proposition is proven.
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