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Abstract: In many application areas, there are skilled experts who excel in control and decision
making. It is desirable to come up with an automated system that would use their skills to help
others make similarly good decisions. Often, the experts can only formulate their skills in terms
of rules that use imprecise (“fuzzy”) words from natural language like “small”. To transform
these fuzzy rules into a precise control strategy, Zadeh designed special technique that he called
fuzzy. This technique was later improved – e.g., by adding explicit information about what the
experts consider not a good control; such addition is known as intuitionistic fuzzy technique. The
problem that we consider in this paper in that in many cases, in addition to the fuzzy expert rules,
we also have some extra knowledge about the function u(x) – the function that describes what
control to apply for a given input x. For example, it is often reasonable to require that this function
is increasing: the larger x, the more control we should apply. In this paper, we use the general
decision theory technique to show how this additional information can be incorporated into fuzzy
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1 Formulation of the Problem

Need for fuzzy control. In many practical situations, skilled human experts can make very
effective control decision, very good medical recommendations, etc. – and a few very skilled
experts can make almost perfect decisions and recommendations. It is therefore desirable to
design an automatic system that would incorporate the knowledge and skills of such very skilled
experts – and that would help others make better decisions and recommendations.

One of the difficulties in designing such systems is that in many cases, experts cannot explain
their reasoning in precise terms, they can only explain them by providing rules that are formulated
in terms in imprecise (“fuzzy”) words from natural language like “small”. To transform such
knowledge into precise computer-understandable form, Lotfi Zadeh came up with techniques that
he called fuzzy; see, e.g., [3, 8, 11, 14, 15, 23].

Fuzzy control: main ideas. In the original version of fuzzy techniques, each imprecise property
was described by assigning, to each possible value x of the corresponding quantity, a degree
µ(x) ∈ [0, 1] to which the expert believes that this value satisfies the given property (e.g., that
x is small). Later on, several modifications were proposed – e.g., intuitionistic fuzzy logic (see,
e.g., [1,22]) in which, in addition to the degree µ(x), the expert is asked to provide a degree ν(x)
to which, in the expert’s opinion, the degree x does not satisfy the given property – e.g., to what
extent x is not small.

By using traditional fuzzy technique, for each input x and for each possible value u, we can
estimate the degree m(x, u) to which, based on the expert rules, u is a reasonable control value
to apply. In the intuitionistic case, this value is supplemented by the value n(x, u) to which u is
not a reasonable control.

If all we want is to provide a recommendation to a human expert, then this information is
sufficient. However, in many practical cases, we want to automate this control (or decision
making). In such cases, we need to transform such fuzzy recommendations into a value u(x)

that we need to apply for the input x. Such transformation of fuzzy degrees into a single
value is known as defuzzification. The most widely used defuzzification – known as centroid
defuzzification – has the following form:

u(x) =

∫
m(x, u) · u du∫
m(x, u) du

. (1)

In the intuitionistic case, we first combine the value m(x, u) and n(x, u) into a single number –
e.g., the number

c(x, y) =
m(x, u) + (1− n(x, u))

2
, (2)
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and then apply centroid defuzzification to this combined membership function (see, e.g., [16]):

u(x) =

∫
c(x, u) · u du∫
c(x, u) du

. (3)

Remaining question. In many practical situations, in addition to expert rules, we have some
additional information about the control function. For example, we may know that the control u
should be an increasing function of x. For example, if we are describing braking, the larger the
initial speed x, the more intense should be the braking.

This monotonicity is usually reflected in the corresponding rules, but – due to the fuzzy
character of these rules – it is reflected only approximately. As a result, in some cases, even
when rules are monotonic, the fuzzy control obtained by using the formula (1) is not everywhere
monotonic; see, e.g., [21]. To avoid such situations, it is desirable to incorporate monotonicity –
and other similar requirements – into fuzzy control.

What we do in this paper. In this paper, we show how monotonicity – and other similar
properties – can be incorporated into fuzzy and intuitionistic fuzzy control.

2 Analysis of the problem and the resulting formulas

Idea. Practitioners use centroid defuzzification because it is very empirically efficient, i.e.,
because it is, in some reasonable sense, better than all other proposed defuzzification methods.
This means that this method is optimal with respect to some reasonable criterion. So, a natural
idea is to explicitly formulate this criterion – and then, solve the corresponding optimization
problem under the monotonicity – (or any other) constraint.

To come up with such a criterion, let us use general decision theory.

Decision theory: a brief reminder. Decision theory (see, e.g., [5, 6, 9, 10, 12, 13, 17]) describes
how a rational person should make a decision.

According to decision theory, a person’s preferences can be described by a special function
U(x) called utility such that out of all possible actions for which we get the result ri with
probability pi, the decision maker selects the action for which the following expression – known
as expected utility – attains the largest possible value:

U = p1 · U(r1) + p2 · U(r2) + . . .+ pn · U(rn). (4)

Utility is defined modulo adding a linear transformation – we can always choose a different
starting point and a different measuring unit. To make computations simpler, let us take, as a
starting point, the ideal situation when we know the exact value of the best control. In this case,
in all other situations, utility will be smaller than that – i.e., its values will be negative.

What do we need to do to apply this criterion. This criterion is usually applied in situation
when we know the probabilities and when we know the utility function. In our fuzzy control
case, we do not have this information. So, to apply this approach to the fuzzy control situation,
we need to estimate the probabilities and the utility. Let us do it.
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How to estimate the probabilities. To estimate the probabilities, let us take into account that one
of the natural ways to estimate the fuzzy degree is to poll several experts. For example, to decide
to what extend 30 C is hot, we can ask 10 experts. If 8 of them think that 30 degrees is hot, then
we assign, as the value µ(30) of the corresponding membership function, the degree 8/10 = 0.8.

From this viewpoint, if for some input x, we have a control value u with a degree m(x, u) to
which u is reasonable, we can interpret it as follows. Let us assume that we polled N experts.
This means that

µ(x, u) =
N(x, u)

N
, (5)

where N(x, u) is the number of experts who believe that u is a reasonable control value for this
x. Based on the formula (5), we can conclude that N(x, u) = N ·m(x, u).

So, if we have values u1, . . . , un with degrees m(x, u1), . . . ,m(x, un), this means that:

• we have N ·m(x, u1) experts who believe that u1 is a reasonable control value,

• we have N ·m(x, u2) experts who believe that u2 is a reasonable control value,

• . . . , and

• we have N ·m(x, un) experts who believe that un is a reasonable control value.

So, overall, we have

N
def
= N ·m(x, u1) + . . .+N ·m(x, un) = N · (m(x, u1) + . . .+m(x, um)) (6)

opinions. We have no reasons to believe that one of these opinions is more valuable than others.
So, it makes sense to assign to each of thse opinions the same probability

pi =
1

N
.

Comment. Such an argument is often used in probability theory. It is known as Laplace
Indeterminacy Principle; see, e.g., [7]. This principle makes perfect sense: e.g., if we have
several suspects of a crime, and we have no reason to suspect one of them more than others, then
it makes sense to assign, to each of them, the same a priori probability.

With these probabilities, the expected utility takes the following form:

U(u) =
N ·m(x, u1)

N
· U(x, u, u1) + . . .+

N ·m(x, un)

N
· U(x, u, un). (7).

where U(x, u, ui) is the utility of selecting the control value u when the best control value is ui.
All the terms in this sum have the same factor N and the same denominator N – as described

by the formula (6). So, we can combine them together:

U(u) =
N · (m(x, u1) · U(x, u, u1) + . . .+m(x, un) · U(x, u, un))

N · (m(x, u1) + . . .+m(x, um))
. (8)
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Dividing both numerator and denominator by N , we get a simplified expression

U(u) =
m(x, u1) · U(x, u, u1) + . . .+m(x, un) · U(x, u, un)

m(x, u1) + . . .+m(x, um)
. (9)

To complete this description, we need to estimate the utility values.

How to estimate the utilities. In most practical situations, we do not know how exactly utility
depends on the control values. Such situations – when we do not know the exact form of
dependence – is typical in many applications areas, e.g., in physics. In physics, the usual approach
to such situations – see, e.g., [4,20] – is to take into account that the dependence is usually smooth,
and usually, smooth functions can be expanded in Taylor series over some small value. To get a
good approximation to the function, we can just take the sum of the first few terms in the Taylor
series. In the first approximation, we usually take the smallest number of terms that are consistent
with the qualitative understanding of the situations.

Let us apply this approach here. We assume that the experts are reasonably good. This means
that their estimates ui are close to the actual best value u, i.e., that the difference ∆ui

def
= ui−u is

small. So, we can expand the expression U(x, u, ui) = U(x, u, u+∆ui) in Taylor series in terms
of ∆ui.

We know that the utility U(x, u, u + ∆ui) is equal to 0 when u = ui, i.e., when ∆ui = 0,
and it is smaller than 0 for all other values ∆ui. This means that this function of ∆ui attains its
maximum when ∆ui = 0. This fact implies that we cannot only keep terms which are linear
in ∆ui – since linear functions do not attain their maxima. Thus, we need to consider quadratic
terms. In general, such a quadratic expression takes the following form:

U(x, u, u+∆ui) = a0(x, u) + a1(x, u) ·∆ui + a2(x, u) · (∆ui)
2. (10)

The fact that this value is equal to 0 when ∆ui = 0 implies that a0(x, u) = 0. The fact that the
function (10) attains its maximum for ∆ui = 0 implies that the derivative of the expression (10)
is equal to 0 when ∆ui = 0 – which implies that a1(x, u) = 0. Thus:

U(x, u, u+∆ui) = a2(x, u) · (∆ui)
2. (11)

The fact that all utility values are non-negative means that a2(x, u) < 0.
We can simplify the expression (11) even further if we take into account that, as we have

mentioned earlier, the utility usually smoothly depends on u – which means that the function
a2(x, u) also smoothly depends on u. So, we can select some value u0 close to all the expert
estimates, so that a(x, u) = a(x, u + ∆u), where we denoted ∆u

def
= u − u0. By applying the

same Taylor approximation idea as before, we conclude that in the first approximation, we have

a2(x, u) = a2(x, u0 +∆u) = a2(x, u0) + a3(x, u0) ·∆u. (12)

Substituting the expression (12) into the formula (11), we get

U(x, u, u+∆ui) = a2(x, u0) · (∆ui)
2 + a3(x, u0) ·∆u · (∆ui)

2. (13)
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The last term in this expression is already cubic in terms of small differences ∆u and ∆ui. Since
we are only considering quadratic approximation, we can safely ignore this terms and get:

U(x, u, ui) = U(x, u, u+∆ui) = a2(x, u0) · (∆ui)
2 = a2(x, u0) · (ui − u)2. (14)

Now, we get the final expression for utility. Substituting the expression (14) into the formula
(9), we conclude that

U(u) =
m(x, u1) · a2(x, u0) · (u1 − u)2 + . . .+m(x, un) · a2(x, u0) · (un − u)2

m(x, u1) + . . .+m(x, um)
. (15)

By definition of utility, for each x, we need to select the control value u for which the utility is the
largest possible. If we multiply all the values of the objective function by a positive constant, this
does not change which value is larger and which is smaller: e.g., who is the richest person does
not change whether we count his/her amount in US dollars or in Euros. Thus, for the purpose of
maximizing utility, we can multiply all the values of the utility function by the denominator of
the expression (15) and divide by the absolute value |a2(x, u0)|. This way, we get the equivalent
maximizing function

U(u)
def
= −(m(x, u1) · (u1 − u)2 + . . .+m(x, un) · (un − u)2). (16)

Maximizing this expression is equivalent to minimizing its opposite

−U(u) = m(x, u1) · (u1 − u)2 + . . .+m(x, un) · (un − u)2. (17)

In the continuous case, the sum becomes the integral, so we want to minimize the expression∫
m(x, u) · (u− u)2 du. (18)

Comment. From the computational viewpoint, the minimized expressions (17) and (18) are a
particular case of the general Least Squares problem (see, e.g., [19]), when we minimize the sum
of squares of some expressions.

If there are no additional constraints, this expression leads exactly to centroid
defuzzification. Indeed, if we differentiate the expression (17) with respect to u and equate
the derivative to 0, we conclude that

2m(x, u1) · (u− u1) + . . .+ 2m(x, un) · (u− un) = 0. (19)

If we divide both sides by 2, move all the terms not containing u to the right-hand side, and group
together all the terms proportional to u in the left-hand side, then we get the following linear
equation with one unknown:

(m(x, u1) + . . .+m(x, un)) · u = m(x, u1) · u1 + . . .+m(x, un) · un. (20)
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Thus:

u =
m(x, u1) · u1 + . . .+m(x, un) · un

m(x, u1) + . . .+m(x, un)
. (21)

In the continuous case, when sums turn into integrals, we get exactly the centroid
defuzzification (1).

What to do if we have an additional constraint on the dependence u(x) – e.g., monotonicity.
In the previous part of the section, we only considered utility corresponding to a single input x.
If we impose an additional restriction that relates controls corresponding to different inputs, then
we need to consider the overall utility, i.e., the sum – or integral – of the expression (15) over
all x.

Similarly to what we argued about the possibility to ignore, in this approximation, the
dependence of a2(x, u) on u, we can argue that – at least for some range of inputs – we can
also ignore the dependence on x, i.e., replace a2(x, u0) with a2(x0, u0). In this case, maximizing
the overall utility for all possible values of x is equivalent to minimizing the following integral∫

x

∫
u

m(x, u) · (u− u(x))2 du dx. (22)

So, if we know some additional constraint(s) on the function u(x), e.g., that this dependence
should be monotonic, then we should find, among all the functions u(x) that satisfy these
constraints, the one for which the expression (22) attains the smallest possible value.

How to actually find such control: case of monotonicity. The minimized function (22) is still
the sum (integral) of squares, so it is still a particular case of the general Least Squares problem.
For the case when the restriction is that the function u(x) is a (non-strictly) increasing function
of x, the problem becomes: to find an increasing solution to the Least Squares problem. In data
processing, this problem is known as isotonic regression. There exist efficient algorithms for
solving this problem; see, e.g., [2, 18].

What to do in the intuionistic fuzzy case. In the intuitionistic fuzzy case, for each x and u, in
addition to

N ·m(x, u)

experts who believe that u is a reasonable control value, there are also N · n(x, u) experts who
believe that u is not a reasonable control value.

To take their opinions into account, we need to describe it in terms of utility, i.e., we need to
describe the utility V (x, u, ui) corresponding to the case when the actual best control value is u
but the i-th expert says that ui is not a good value. Similarly to the fuzzy case, we can select a
starting point for the utility as the point for which ui = u. The difference is that now this is the
worst case, when the expert is completely wrong. So, in this case, for all ui ̸= u, the utility is
larger. Thus, the function V (x, u, ui) should now attain its minimum for ui = u. Similarly to the
fuzzy case, this means that we cannot restrict ourselves to linear terms in the Taylor expansion,
we need to take quadratic terms into account. If we restrict ourselves to quadratic terms, then,
similarly to the fuzzy case, we get

V (x, u, ui) = b2(x, u0) · (u− ui)
2, (23)
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where this time, the expression b2(x, u0) is positive.
If we now add up all terms corresponding to positive and negative opinions and perform the

same simplifications as in the fuzzy case, we conclude that maximizing utility is equivalent to
minimizing the expression

m(x, u1)·(u−u1)
2−r·n(x, u1)·(u−u1)

2+. . .+m(x, un)·(u−un)
2−r·n(x, un)·(u−un)

2, (24)

where r
def
= b(x, u0)/|a(x, u0)|. In other words, we want to minimize the expression

c(x, u1) · (u− u1)
2 + . . .+ c(x, un) · (u− un)

2, (25

where c(x, ui) = m(x, ui) − r · n(x, ui) is a combination of positive and negative membership
functions. In the continuous case, thie means minimizing the expression∫

c(x, u) · (u− u)2 du. (26)

Similarly to the fuzzy case, in the absence of additional constraints, minimizing the
expressions (25)–(26) is equivalent to applying centroid defuzzification to the combined
membership function. In the case of constraints, we need to find the function u(x) that, among
all the functions that satisfy the given constraints, minimizes the expression∫

x

∫
u

c(x, u) · (u− u)2 du dx. (27)

For the case of monotonicity, we can similarly use isotonic regression techniques from [2, 18] to
find the corresponding function.

3 Conclusion

Let us summarize our results. In this paper, we discussed a problem of how to take into account
additional a priori constraints on the control function u(x) in fuzzy and intuitionstic fuzzy control.
To solve this problem, we used the general techniques of decision theory. By applying these
techniques, we came up with the following conclusions.

In the fuzzy case, when we have a membership function m(x, u) – that describes to what
extent u is an appropriate control for the input x – to find the corresponding control, we need to
find, among all the functions u(x) that satisfy the given constraints, the function that minimizes
the following expression: ∫

x

∫
u

m(x, u) · (u− u(x))2 du dx. (22)

In the intuitionistic fuzzy case, when we also have a negative membership function n(x, u) that
describes to what extent u is not an appropriate control for the input x, we need to minimize the
following expression: ∫

x

∫
u

c(x, u) · (u− u(x))2 du dx, (27)
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where c(x, u) = m(x, u) − r · n(x, u) is a combination of positive and negative membership
functions.

In the important case when the constraint means that the function u(x) should be an increasing
function of x, we can use efficient algorithms of isotonic regression [2,18] to minimize the above
expressions.
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