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Abstract

We explain the main ideas behind the symmetry approach — which is
one of the main tools of modern physics, and we show that this approach
can explain the computational advantage of intuitionistic fuzzy logic in
comparison with its interval-valued reformulation.

1 Why symmetries?

In this paper, we will use symmetry approach — one of the main tools of modern
physics. Since many people in the computing community are not well familiar
with this approach, let us briefly explain its main ideas.

Why symmetries. One of the main objectives of science and engineering is
to predict future events — and to make sure that these future events are as
beneficial to the humankind as possible. In general, what is the reason why we
can make predictions in the first place?

For example, why are we sure that if we drop a pen (or any other object),
it will start falling down with the acceleration of 9.81 m/sec?? Because the
same experiment was performed at different locations on the Earth, with the
experimenters facing different directions, and in all these cases, we observed the
same phenomenon. In other words, we can move to a different location, we
can rotate — and this phenomenon will not change. In geometric terms, this
phenomenon is symmetric with respect to shifts and rotations.

Such situations are ubiquitous. In all these situations, we have some trans-
formations that do not change the corresponding physical process. In physics,
such transformations are known as symmetries. In ordinary speech, we most
apply this word to invariance under geometric transformations such as rotations



or reflections in a plane, but in physics, this term is applied to any transforma-
tions, not necessarily geometric. For example, electromagnetic interactions will
not change if we replace all positive charges with negative ones and vice versa
— in physics terms, this is symmetry.

The idea of symmetry can be (and is) applied to even more complex situa-
tions than these. For example, how do we know that Ohm’s law will hold when
students do experiments in our lab? Because this law was followed on many
different locations on Earth — and even on many locations outside the Earth
surface.

Symmetries are one of the main tools in modern physics. Physicists
fully understood the importance of symmetries around the 1960s, and this un-
derstanding revolutionized physics; see, e.g., [3, 15]. Even the way physical
theories are proposed has changed. In the past, starting from Newton, new
physical theories were proposed in terms of differential equations. Nowadays,
starting with quarks, new theories are described by listing the corresponding
symmetries — and differential equations can be then derived from these symme-
tries. This is not only about new theories: it turned out that most fundamental
physical theories that were proposed before this symmetries revolution — such
as Maxwell’s electrodynamics, quantum physics, special relativity, general rel-
ativity, etc. — can be reformulated in terms of the corresponding symmetries,
symmetries that uniquely determine the corresponding differential equations;
see, e.g., [4].

Symmetries have been useful in computing as well. The same symmetries
ideas have been applied to many application areas beyond physics. For example,
it turned out that many empirically successful selection of intelligent techniques
— be it selection of membershipo functions and “and”- and “or”-operations in
fuzzy logic (see, e.g., [2, 6, 10, 13, 14, 17]), selecting activation functions in
neural networks, and appropriate functions in genetic algorithms and simulated
annealing — all this can be naturally explained by the corresponding symmetries;
see, e.g., [12] and references therein. As for modern deep neural networks with
their spectacular successes — most of their empirically successes features can
also be explained by symmetries; see, e.g., [7].

2 Symmetries and optimality

In the previous section, we mentioned that symmetries can help explain the em-
pirically successful algorithmic (and other) choices. Let us explain how exactly
the symmetries approach can help find optimal solutions to practical problems.
To explain this, we first need to describe, in precise terms, what we mean by
transformations and what we mean by optimality.

What we mean by symmetries. If transformations g and g’ both preserve
the corresponding phenomenon, then if we apply them one after another — i.e.,
if we form what is known as a composition of two transformation, then this
composition also preserves the phenomenon. For example, if we first go 10



meters forward — which preserves the above-described pen-dropping behavior —
and then go 10 meters to the right — which also preserves this behavior — then
the resulting diagonal shift also preserves this behavior. Similarly, if we perform
the inverse transformation g=! — e.g., go back 10 meters — the behavior with
not change.

Thus, the set of phenomenon-preserving transformations must be closed un-
der composition and under taking the inverse. Such sets of transformations are
known as transformation groups.

What we mean by optimal. There may be different optimality criteria, but
they are all based on the possibility to compare two alternatives a and b:

e Sometimes, we can conclude that a is better; we will denote it by a > b.
e Sometimes, we can conclude that b is better, i.e., that b > a.

e Sometimes, we can conclude that a and b are, from the decision maker’s
viewpoint, of equal value: we will denote it by a ~ b.

e And sometimes, we cannot meaningfully compare the two alternatives.

In other words, to describe what is optimal, we need to have two binary relations
> and ~. Of course, these relations must be consistent: e.g., if a is better than
b and b is better than ¢, then a should be better than c¢. In these terms, an
alternative a is optimal if it is either better than or of the same quality as all
other alternatives b, i.e., if for every b, we have either a > b or a ~ b.

What if there are several different optimal alternatives which are equally
good with respect to the given optimality criterion? This means that we can
now use some other criterion to optimize something else. For example, if we are
looking for the most healthy diet, and we came up with several equally healthy
diets, then a natural idea is to select the one which is the tastiest. If we have
several algorithms that lead to the same optimal accuracy, we can select the one
which is, e.g., the fastest.

In general, if an optimality criterion does not lead to a unique optimal alter-
native, this means that this criterion is not final: we can use this non-uniqueness
to optimize something else. So, it makes sense to consider final optimality cri-
teria, for which there is exactly one optimal alternative.

The optimality criterion should be invariant. If there is a transformation
that preserves the corresponding phenomenon, then which alternative is better
should not change if we apply this transformation. For example, since the laws of
electrodynamics do not change under spatial shift, we expect that the relative
quality of two electric devices will remain the same if we simply move both
devices the same distance in the same direction.

Definitions and the result. Now we are ready to formulate all this in precise
terms, and to finally explain how symmetries lead to optimality.

Definition 1. Let A be a set. We will call its elements alternatives. By an
optimality criterion on the set A, we mean a pair of relations (<, ~) for which
the following conditions are satisfied for all a, b, and c:



e ifa>0bandb>c, thena > c;
e ifa>0bandb~c, then a > c;
e ifa~bandb>c, then a > c;
e ifa~bandb~ c, then a ~ c;
o ifa~b, then b~ a;

e we always have a ~ a;

e we cannot have a > b and a ~ b.

We say that an alternative aopy s optimal if for every a € A, we have either
Gopt > G OT Qopt ~ a. We say that the optimality criterion is final if for this
criterion, there is exactly one optimal alternative.

Definition 2. Let G be a transformation group. We say that the optimality
criterion is G-invariant if for all alternatives a,b € A and for all transformations
g € G, we following two conditions are satisfied:

e ifa>b, then g(a) > g(b); and
e ifa~b, then g(a) ~ g(b).

Proposition. If an alternative aope is optimal with respect to some final G-
mwvariant optimality criterion, then this alternative is also G-invariant, i.e.,

9(aopt) = aopt, for all g € G.

Comment. Thus, to find the optimal alternative, we only need to consider
G-invariant (symmetric) alternatives — and if there is only one such invariant
alternative, then this is exactly the optimal one.

Proof of the Proposition. Let us show that for every g, we indeed have
g(aopt) = Qopt-

Indeed, by definition of optimality, for every alternative a, we have either
Gopt > @ OF Gopt ~ a. In particular, this is true for each alternative gil(a):
for every a, we have either aop; > g7 1(a) or aepr ~ g~ '(a). Since the optimal-
ity criterion is G-invariant, we can conclude that for every a, we have either
9(aopt) > g(97(a)) = a or g(aopt) ~ g(9*(a)) = a. Thus, for every a, have
either g(aopt) > a or g(aop;) ~ a. By definition of the optimal alternative,
this means that the alternative g(aop) is optimal. But since our optimality
criterion is final, this means that it has only optimal alternatives, thus indeed
g(aopt) = Qopt -

The statement is proven.

What we do in this paper. In this paper, we apply the symmetry approach
to intuitionistic and interval-values fuzzy logics. So, let us briefly recall these
two ideas.



3 Intuitionistic and interval-values fuzzy logics:
a brief reminder

Traditional fuzzy logic: a brief reminder. In the early 1960s, Lotfi Zadeh,
who was one of the leading specialists in control, noticed that in many cases,
skilled human controllers control systems — like chemical plants — more effec-
tively than the supposedly optimal automatic controllers. Of course, one cannot
be better than the optimal, so this simply meant that the supposedly optimal
controllers were not really optimal. To be more precise, they were optimal with
respect to the model used in their design — but this model was not always an
adequate description of the actual physical systems. In other words, skilled
controllers have some additional knowledge that was not incorporated into the
existing models.

Skilled controllers were willing to share this knowledge — but unfortunately
they could only describe it by using imprecise (“fuzzy”) words from natural
language such as “small”. To describe this knowledge, Zadeh designed special
techniques — that he called fuzzy. Specifically, to describe a word like “small”,
he suggested to ask the experts to mark, for each possible value x of the cor-
responding quantity, the degree m(z) — on the scale from 0 to 1 — to which
the expert believes that this value satisfies the given property (e.g., to which x
is small). This technique has indeed led to many practical successes; see, e.g.,
[2, 6, 10, 13, 14, 17].

In practice, we also use logical combinations of statements — i.e., complex
statement obtained by applying logical connectives like “and”, “or”, and “not”.
To estimate our degree of confidence in such statements, we need to extend
the usual logical operations from the set {0,1} = {“false”,“true”} to the whole
interval [0, 1]. Such extensions are known as, correspondingly, “and”-operations
fa(a,b) (also called t-norms), “or”-operations fy(a,b) (also called t-conorms),
and negation operations f_(a). The simplest such operations are fg(a,b) =
min(a,b), fv(a,b) = max(a,b), and f_(a) =1—a.

Limitation of the traditional fuzzy techniques. One of the limitations
of the traditional fuzzy technique is that it cannot distinguish between two
completely different situation:

e when we know nothing about a statement, and

e when we have a large number of arguments for the statement and an equal
number of arguments against it.

In both cases, we have equal number of arguments for and against, so it makes
sense to describe each of these situations by a number which is equidistant from
both 1 (“definitely yes”) and 0 (“definitely no”), i.e., by the number 0.5.

To overcome this limitation, two different techniques were developed: intu-
itionistic fuzzy logic and interval-valued fuzzy logic.

Intuitionistic fuzzy logic. In the above situation, a natural idea is to explic-
itly take into account how many arguments we have for and again this statement:



e in the first case, we have no arguments for each side, so we can say that
my(x) = m_(z) =0, while

e in the second case, we have many arguments for both side, so we can take
m4(z) = m_(z) = 0.5.

In general, instead of a single value m(z), we have two values:

e the value m (x) describes to what extend the expert is confident that the
given statement is true, and

e the value m_(z) describes to what extend the expert is confident that the
given statement is false.

This idea — first proposed by Krassimir Atanassov — is known as intuitionistic
fuzzy approach; see, e.g., [1, 16]. Its name came from intuitonistic logic, in
which some statements are neither true nor false — this makes sense, e.g., in
constructive interpretation, where VxA(x) would mean that we have an algo-
rithm that proves A(z) for each z, and its negation would mean that we can
algorithmically construct an object x for which this property does not hold —
and such algorithms do not always exist.
Logical operations can be naturally extended to this case:

f&((a-‘rv CL_), (a+7a—)) = (min(a-‘m b+),max(a_,b_)),

f\/((a’-‘r,a—)v (a-i-aa—)) = (max(a+,b+),min(a_,b_)), and

f~((ay,a-)) = (a, ay).

An alternative approach: interval-valued fuzzy logic. Another approach
to overcoming the above-described limitation of the traditional fuzzy logic is to
take into account that in the above two situations, we may eventually end up
with different degrees:

e in the first case, after we gain more information about the statement, we
may end up in any degree of confidence: from 0 when all future evidence
will be against the statement, to 1, when all future evidence will be for this
statement; so, the set of all possible values of the future expert’s degree
of confidence is the whole interval [0, 1];

e in the second case, only the value 0.5 is possible — which corresponds to
the degenerate interval [0.5,0.5].

In general, we can have all possible intervals [a,a] C [0,1]. This idea was
proposed by Zadeh himself and then actively developed by Jerry Mendel and
his group; see, e.g., [10].
Logical operations can be naturally extended to such case: for each operation
f(a,b), we can take (see, e.g., [5, 8, 9, 11]):
def T

f(la.a], [b,8]) = {f(a,b) : a € [a,a],b € [b,0]}.



As a result, we get the following operations:
fe(la,al, [b,8]) = [min(a, b), min(@, b)];
fV([Qa ﬁ], [bv BD = [ma'x(ga b)? max(a, B)]v
f~(le,a)) =1 —a,1 —al

4 Relation between intuitionistic and interval-
valued fuzzy techniques and how symmetries
can explain this relation

Interestingly, from the purely mathematical viewpoint, these two ap-
proaches are equivalent. Let us start with the well-known fact: that while
the ideas behind these two approaches are different, from the purely mathemat-
ical viewpoint, these two approaches are equivalent — in the sense that we can
transform them into one another while preserving all three logical operations.
This can be attained when we:

e assign, to each intuitionistic degree (a4, a_), the interval [a4,1—a_] and,
vice versa,

e assign, to each interval [a, @], the intuitionistic degree (a,1 — @).

However, from the computational viewpoint, the intuitionistic ap-
proach is more efficient. Indeed, in the intuitionsitic approach, all we need
is min and max, while in the interval-valued approach, we also need the sub-
traction 1 — a.

To perform a substraction of an n-bit number a, we need to flip all n bit
— s0, we need n bit operations, which for 64-bit words means 64 operations.
In contrast, to compute min or max, we only need to decide which of the two
numbers to use — i.e., to decide which of the two numbers are larger. In half of
the cases, the first (largest) bits are different, so we get our answer already after
1 bit comparison. In situations in which their first bits are the same, in half of
these cases — i.e., in 1/4 of overall cases — the second bits are different, so we
get the answer after 2 bit operations, etc. In general, with probability 2%, we
need k bit operations, so the overall expected number of bit operations is equal
to

s=2"1. 1427224 427 k4.

To compute this sum, let us divide all the terms by 2, then we get

g:2‘2~1+2‘3~2+...+2"“-(k—1)+2‘(k+1)-k+...

If we subtract the second sum from the first one, for each k, we get the term

27k g2 (k—1)=27F



so the overall difference takes the following form:
S -1 -2 -k
522 + 27+ 274

The right-hand side is a well-known geometric progression whose sum is 1. So,
s$/2=1and s =2.

Thus, each min or max operation requires, on average, 2 bit operations —
which is 32 times fewer than 64 bit operations needed to compute 1 — a, Thus,
intuionistic fuzzy logic is indeed computationally much more efficient than its
interval-valued form.

How can we explain it in terms of symmetries? When we do not known
whether the statement S is true or its negation =S is true, we can view both S
or =S as the main statement. In other words, we have a natural symmetry: we
can swap a statement and its negation.

Intuitionistic fuzzy logic is invariant with respect to this swap: all we have
to do to perform this operation is to swap the two degrees, i.e., to go from
(at,a—) to (a—,a4): no arithmetic operations are needed. In contrast, in the
interval-valued approach, a similar swap requires two negations.

Our general result says that for any invariant optimality criterion, the opti-
mal alternative is also invariant. Clearly, comparing computational complexity
— i.e., average running time — of the logical operations should not depend on
whether we consider the statement or its negation as basic. So, this criterion is
invariant with respect to the swap — and the only swap-invariant representation
is the intuitionstic fuzzy one.

So, symmetries indeed explain why the intuionistic fuzzy techniques are com-
putationally more efficient than their interval-values reformulation.
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