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Abstract The Nolelist Niels Bohr, the author of the modern atomic model, made a
famous observation that “It is the hallmark of any deep truth that its negation is also
a deep truth.” In this paper, we show that physics-motivated symmetry ideas can
explain this phenomenon. We also show that similar ideas can explain the efficiency
of Walsh-Hadamard transformations in quantum computing, the use of randomized
initial weights in neural networks, Hegel’s negation of negation ideas — and pro-
vide multiple-logic recommendations on how to decrease the frequency of LLMs’
hallucinations.

1 It all started with Niels Bohr

This phenomenon was first observed in physics. One of the problems with which
the 19th century physics struggled was the problem of light. The problem was that in
some experiments, light behaves like a wave, while in other experiments, it behaves
like particles. Both ideas led to useful conclusions, but they seemed to be inconsis-
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tent with each other: either light is particles or it is not made of particles. Quantum
physics solved this problem by providing a way to describe such phenomena in a
consistent way. In this situation, both the idea that light is a continuous wave and
this idea’s negation — that light is formed by discrete particles — turned out to be
deep ideas, of great importance to physics.

Niels Bohr noticed that this phenomenon is ubiquitous. Niels Bohr, one of the
pioneers of quantum physics, observed that a similar phenomenon occurs in many
other areas of knowledge and belief. For example, in physics, both the original idea
that our space has Euclidean geometry and the opposite idea — that eventually led
to general relativity — that the geometry of our space is non-Euclidean — are deep
and useful ideas. As a more general example: both the idea that there is an almighty
God and the idea that there is no God — both are deep and productive ideas: e.g., the
idea that there is no God led many scientists to successfully search for natural ex-
planation of real-world phenomena, explanations that greatly contributed to modern
physics, biology, etc. Niels Bohr summarized this phenomena by saying that “It is
the hallmark of any deep truth that its negation is also a deep truth. [3].

But how can we explain this phenomenon? Scientists and philosophers came up
with many examples confirming that this phenomenon is indeed ubiquitous. But
why? How can we explain this ubiquity?

What we do in this paper. In this paper, we provide an explanation for the deep
truths phenomenon. This explanation is based on two facts: (1) that in symmetry
situations, under reasonable conditions, optimum is always achieves in a symmet-
ric case, and (2) that in general, maximum is achieved on the border of the set of
possible alternatives. The structure of this paper reflects this: in Sections 2 and 3,
we briefly explain these general ideas. In Section 4, we explain how these ideas
explain the deep truth phenomenon, and in Section 5, we provide several related
applications.

2 Symmetries and optimization

In this section, we will explore the relation between symmetries and optimization.
For this purpose, we start with the general reminders of what are symmetries and
what is optimization, and then we show how these concepts are related.

What do we mean by symmetries and why they are important. The usual way we
can predict future events is by using previous experience. We have observed that the
sun rises every morning, so we predict that in a similar situation, it will rise again. If
in the past, headache and small fever eventually led to a flu, next time, in a similar
situation, the person expects that similar symptoms will lead to a flu. If several
experiments confirmed relativity theory, then we expect the future experiments to
also be in line with its predictions.

In all these cases, we rely on the notion of similarity. The next time when we
feel headache and small fever we may have moved to a new location, we may be
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turning the other way, we may be dressed differently — but we have learned, from
experience, that all these differences do not change the outcome. In physics, such
transformations that do not affect the phenomenon that we are studying are called
symmetries.

Not surprisingly, symmetries are one of the main ideas in physics; see, e.g., [4,
17]. Starting with the quark theory in the 1960s, most new theories in physics appear
not in the form of differential equations — as in the time on Newton — but in terms of
the corresponding symmetries. Moreover, it turned our for most previously proposed
fundamental physical theories, be it electrodynamics, quantum physics, etc. — their
differential equations can be uniquely determined by the corresponding symmetries;
see, e.g., [S].

Towards a precise description of symmetries. Let us denote by S the set of possi-
ble situations. A symmetry g € G is a function g : S — § that maps each state s € S
into a new state g(s). Examples can be shift in space, rotation, changing clothes,
changing positive electric charges to negative ones and vice versa, etc.

When we have two symmetries g; and g, this means that the studied phe-
nomenon does not change when we apply each of these trasnformations to the
state. Thus, if we first apply g; and get s’ = g1(s), and then apply g and get
g2(s") = g2(g1(s)), then also the phenomenon will not change. This means that

the composition (g 0 g;1)(s) &f g2(g1(s)) is also a symmetry. Similarly, the inverse
transformation — e.g., if we shift back — does not change the phenomenon. Thus,
the class G of all the symmetries is closed under composition and under taking the
inverse. Such classes are known as transformation groups.

What is optimization. In its most general form, optimization means that we have
some way to compare two alternatives a and b and conclude either that a is better
(we will denote it by a > b) or that b is better (b > a), or that a and b are of equal
quality with respect to the desired objective (we will denote it by a ~ b). Of course,
these comparisons must be consistent: e.g., if a is better than b and b is better than
¢, then a should be better than c. In these terms, an alternative aqp is optimal if for
every alternative a, we have either aqp > @ Or aop ~ a.

Sometimes, several alternatives are the best according to the given optimality
criterion. In practice, this means that we can use this non-uniqueness to optimize
something else. For example, a poor student may want to minimize the cost of
his/her lunch. If there are several equally cheap options, this means that the stu-
dent can select, among them, the one which is the healthiest (or, alternatively, the
one which is the tastiest). This means, in effect, that the previous optimality criterion
was not final — now we have a new criterion in which a > b if either a is cheaper than
b — or a and b lunches cost the same, but lunch option a is healthier. Similarly, in
general, if there are several optimal alternatives, this means that the optimality crite-
rion is not final, it can be detailed some more. Thus, for a final optimality criterion,
there is exactly one optimal alternative.

Let us describe all this in precise terms.
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Definition 1. Let the set S be given. Its elements will be called alternatives. By an
optimality criterion, we mean a pair of binary relations (>, ~) on the set S for which
the following conditions hold for all a,b,c € S:

e ifa>bandb > c, thena > c;
e ifa>bandb~c, thena > c;
* ifa~bandb>c, thena > c;
e ifa~bandb~c, thena~ c;
* ifa~b, thenb ~ a;

e ifa> b, thena+ b;

e always a~ a.

Definition 2. Let an optimality criterion (>,~) on a set S be given.

* An alternative aop is called optimal if for every a € S, we have either aqy > a or
Qop ~ a.

o We say that the optimality criterion is final if there exists exactly one optimal
alternative.

Relation between symmetry and optimization. By definition, symmetry does not
change the desired properties — and thus, does not change which alternative is better.
Here is a precise definition.

Definition 3. Let G be a transformation group on the set S. We say that the optimality
criterion is G-invariant of for every two alternatives a and b and for every symmetry
g € G, the following two conditions are satisfied:

* ifa>b, then g(a) > g(b);
o ifa~Db, then g(a) ~ g(b).

Proposition 1. [12] For every G-invariant optimality criterion, the optimal alterna-
tive aop is itself G-invariant, i.e., §(Aopt) = dopt.

Proof. By definition of an optimal alternative, for every a € S, we have either
Aopt > @ OT dgpe ~ a. In particular, for every a and for every g € G, we have ei-
ther aop > g~ (a) or aep ~ g~!(a). Since the optimality criterion is G-invariant,
this implies that either g(aop) > g(g~!(a)) = a or g(aopt) ~ g(g~'(a)) = a. In other
words, for every a € S, we have either g(aop) > a or g(agpt) ~ a. By definition of an
optimal alternative, this means that the alternative g(aop) is also optimal. But since
the optimality criterion is final, this means that there is only one optimal alternative,
SO g(aopt) = dopt-
The proposition is proven.

3 Optimum is usually on the border

General idea. According to calculus, the maximum of a function on a bounded
domain is obtained either inside this domain — in which case this is a stationary
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point, i.e., a point at which all partial derivatives are 0 — or at the border of the
domain.

In general, a typical objective function has a few stationary points. If the condi-
tions describing the domain are significant, this means that the domain is relatively
small — in comparison with the set of all possible alternatives. When the domain is
small, the probability that this domain happens to include one of the few stationary
points is also small. Thus, in the vast majority of cases, the domain does not have
any stationary points inside — and thus, the maximum of an objective function is
attained on the border of the domain.

Examples. A natural example is a nuclear reactor. To function effectively, it has to
have the neuron reproduction rate equal to 1: if it smaller than 1, then the reaction
will stop; if it is larger than 1, the flow will exponentially increase and we will have
an explosion. In this case, the optimal solution is exactly on the border of the set of
safe regimes.

This may sound like an extreme example, but more mundane examples follow the
same pattern. For example, when people walk, they place their body in an unstable
position, at the edge of falling — and then put the foot down to stabilize the situation.

Now let us go back to Bohr’s phenomenon. Now that we have described the two
ideas, let us how they can explain Bohr’s phenomenon.

4 The above two ideas explain Bohr’s observation

Let us describe Bohr’s observation in precise terms. To apply the above two
ideas to Bohr’s observation, let us describe this observation in precise terms. For this
purpose, we need to make an important distinction between two types of statements.
On the precise side, we have precise empirically observable statements about the
physical world, statements that are either true or false. On the other hand, we have
statements which are more philosophical, meta-statements that are not necessarily
true or false, such as whether light is a particle or whethee there is a God. Let us
consider both types of statements.

Case of precise statements. Let us first consider precise statements. Based on each
true statement s, we can make predictions that will eventually turn out of be true.
Based on its negation —s, we can also make true predictions a, since we can have
—s — a. However, according to logic, the only way the formula —s — a can be true
when —s is false is when a is true — i.e., when we can get a without using —s. So:

 If the statement s is true, then we may have predictions a based on the implication
s — a, predictions that are not possible without using s.

¢ On the other hand, if the statement —s is false, then there are no true statements
a that we can derive from —s that we cannot derive without it.
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Let us describe this in numerical terms. Let us consider all the empirically true
statements that we can derive either by assuming s or by assuming —s. Let p be
the proportion of these statements that can be derived from s, and, correspondingly,
1 — p the proporion of the statements that can be derived from —s. Then:

 if the statement s is true, then all derived new empirical statements come from s,
sop=1;

* on the other hand, if the statement s is false, this means that its negation —s is
true, and all derived new empirical statements come from —s; so, in this case,
p=0.

Case of meta-statements. For meta-statements s, the situation is different: as we
have mentioned on the example of wave-particle discussions, we can make useful
deduction both from s and from its negation — and, as we have shown in [16], there
is no logical inconsistency in this possibility. So, for meta-statements it is possible
to have the proportion p to be strictly between 0 and 1.

Which meta-statements are the deepest? Now, we are ready to deal with Bohr’s
question: which meta-statements are the deepest? To answer this question, we will
apply the above two approaches.

Comment. Note that we did not formalize what exactly “deep” means, we will be
able to provide our explanation without specifying this.

Let us first apply the symmetry approach, and show that it explains Bohr’s
observation. A priori, we do not have any reason to prefer a statement s or its
negation —s. For example, in mathematics, a hypothesis sometimes turns out to be
true, and sometimes, turns out to be false. We may as well consider the negation

s' & s as the main statement and s = —s' as its negation. If we make this change,
then the new value of the proportion p’ will correspond to 1 — p: p' =1 —p.

In other words, the situation is invariant with respect to the transformation
p — 1 — p. It is reasonable to assume that criteria like deepness should not change
if we simply swap s and —s. In other words, the corresponding optimality criterion
should be invariant with respect to the transformation p — 1 — p. So, in accordance
with the main result of Section 2, we can conclude that the deepest statements should
be themselves invariant with respect to this transformation, i.e., that for such state-
ments, we should have p = 1 — p and thus, p = 0.5. In this case, we have exactly the
same number of conclusions that we can make based on the statement s as we can
make based on its negation —s. In other words, a statement is deep if and only if its
negation is deep — which is exactly what Bohr’s statement implies.

An alternative explanation based on the second approach. Different statements
s, with different proportions p, can be described by the distance from this value p to
one of the non-meta values 0 and 1. A natural way to describe the distance between
the two numbers a and b by |a — b|, so the distance from p to one of the values 0
and 1 can be described as d = min(|p —0|,|1 — p|) = min(p,1 — p). As p changes
from O to 1, this distance changes first from 0 to 0.5 (when p = 0.5) and then from
0.5 back to 0.
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According to the general idea of the second approach, the optimum is attained at
the border of the domain of possible distances, i.e., in this case, where the distance
is either 0 or 0.5. When distance is 0, we have the values p =0 or p =1, i.e.,
in effect, we have the usual non-deep statements. Thus, if we are interested in deep
statements, we should take the value d = 0.5 — which corresponds exactly to p =0.5.
Thus, this approach also explains Bohr’s observations.

5 Additional examples

Applications to quantum computing: explaining Walsh-Hadamard transfor-
mations. It is known that using quantum phenomena, we can potentially speed up
many computations — this is known as quantum computing (see, e.g., [14]). For ex-
ample, Grover’s quantum algorithm enables us to find an element with a desired
property in an n-element array in time proportional to 4/n — while for any non-
quantum algorithm, we need in some cases n steps, and n is much larger than /n.

One of the main ideas behind quantum computing is that we use so-called super-
positions of different states in addition to classical (non-quantum) states. In particu-
lar, instead of 0 and 1 in traditional computing, we can have superpositions of these
states, i.e., the state of the type cq - |0) + ¢ - |1), where |co|> + |c1|? = 1. In general,
the coefficients ¢; can be complex, but in quantum computing, usually, real values
are used. A natural question is: which superposition will lead to the most effective
algorithm?

In computations, there is a natural symmetry between Os and 1s — it all depends
on which of the two states of a bit we call O and which state we call 1. So, we
have a natural symmetry here: the swapping of 0 and 1. From the viewpoint of this
symmetry, we can therefore conclude that the most effective state would be the state
that is itself invariant with respect to this transformation, i.e., for which ¢y = ¢y.
Substituting co = c¢; into the condition |co|?> + |c1|? = 1 that describes a general
quantum state, we conclude that either co = ¢; = \@/ 2orcg=c; =—V2 /2.

In quantum physics, states that differ by a factor whose absolute value is equal to
1 are identical — i.e., in effect, a physical state is an equivalence class based on this.
From this viewpoint, the two above cases describe the exact same state

V2 V2

— 0y + — - |1).

0+ 5

Also, for this same reason, states 0 and 1 can be represented not only as |0) and
[1 >, but also as —|0) and —|1 >, so we can consider a more general superposition
+co-|0) £¢; - |1). When both signs are negative, we get the exact same state as
before, but when the signs are different, we get a new state
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These two states form what is called Walsh-Hadamard transformation of the states
0 and 1, they are indeed the basis of most effective quantum algorithms — many of
which have been proven to be optimal; see, e.g., [9].

Applications to neural networks: explaining why initial weights are randomly
chosen. A general neural network does not depend on how we number the neurons
in each layer. In other words, the situation is invariant with respect to any permuta-
tion of neurons in each layer. So, according to our general symmetry approach, the
initial values of the weights should be invariant with respect to all these permuta-
tions — and thus, be equal. However, this does not make sense: due to this symmetry,
if the initial values of all the weights are equal, all the following values will be equal
too — so all the neurons in each layer will simply meaninglessly duplicate each other.
A natural solution is to use random initial weights; in this case, symmetry simply
means that we have the same probability distribution for each weight — but the actual
random values will be, of course, different.

This is exactly what is done when we train a neural network; see, e.g., [2, 6].
In principle, we can avoid equality if we simply deterministically assign different
weights to different connections — but this would not be invariant. So, our symmetry
approach explains why it it turned out to be more effective to use randomized initial
weights and not deterministic ones.

Applications to LLMs: they need to learn to say “I don’t know.” Current LLMs
are taught to always answer “yes” or “no”. As a result, even when they are not sure
about an answer, they produce a definite answer — which is, in some cases, very
different from the truth. This irritating phenomenon is known as hallucinations. A
natural idea is to add some intermediate truth value, in additional to 0 and 1. Same
arguments as in the previous section lead to the selection of the value 0.5 — which
is both invariant with respect to swap 0 <+ 1 and which is the farthsest away from 0
and 1. So, a natural idea is to teach LLMs to use a 3-valued logic, with truth values
0,0.5,and 1.

Comment 1. The above 3-valued logic is a particular case of a more general multiple-
value logic in which truth values form the whole interval [0, 1]. It is also known as
fuzzy logic (see, e.g., [1, 8, 11, 13, 15, 19] — to be more precise, it is the simplest
case of a more general construction of fuzzy logic.

In general, we want to supplement the traditional values 0 and 1 with some other
values from the interval [0, 1] to from a larger set V than {0, 1}. Which other values
should we select? It makes sense to select a closed set S — because if we have values
vy € V that tends to some value v, then, no matter how accurately we implement
all this, for a sufficiently large n, v will be undistinguishable from v,. Thus, even
if we do not use v, we will never be able to determine that — so, without changing
anything, we can add all limit points to the set V and make V a closed set.

Similarly to the previous section, we can conclude that we want to select, among
all the sets V for which {0,1} C V C [0,1], the set whose distance dy(V,{0,1})
from the classical 2-valued set {0, 1} is the largest possible. Here, dy (S, S’) denotes
the usual Hausdorff distance between the two sets: the smallest € > 0 for which all
points from S are located in the e-vicinity of S, and, vice versa, all points from S’
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are located in the e-vicinity of S. Such “farthest-from-{0, 1}” sets are described by
the following proposition.

Proposition 2. For every closed set V with {0,1} CV C [0,1]:

* we have dy(V,{0,1}) <0.5, and
o we have dy(V,{0,1}) = 0.5 ifand only if 0.5 € V.

Proof.

1°. Let us first prove that dy (V,{0,1}) <0.5. Since {0,1} C V, both values 0 and 1
are in V, so their distance to V is 0. Vice versa, if v € V, then for v < 0.5 the value v
is 0.5-close to 0, and for v > 0.5, it is 0.5-close to 1. So, each value from one of the
two sets is indeed 0.5-close to one of the values from another set.

2°. Let us now prove that if 0.5 € V, then dy(V,{0,1}) = 0.5. Indeed, for v = 0.5,
the distance to both 0 and 1 is 0.5, so V cannot be any closer than that to the set

{0,1}.
3°. Finally, let us prove that if 0.5 € V, then dy(V,{0,1}) < 0.5. Indeed, since V is
a closed set, the fact that 0.5 ¢ V means that the whole vicinity (0.5 —8,0.5+ 9)

is outside V, for some & > 0. In this case, similarly to Part 1 of this proof, we can
prove that dy (V,{0,1}) < 0.5 — § and thus, dgy(V,{0,1}) < 0.5. End of proof.

So, all the sets V for which the distance is the largest possible are located between
{0,0.5,1} and [0, 1]. In line with our second argument, we can conclude that the best
sets are at the endpoints of this set-valued interval — the 3-values set {0,0.5,1} and
the whole interval [0, 1].

Comment 2. In general, the same argument shows that when we are not happy with
a certain set of options, a natural idea is to add a new option whose distance from
the set of the previous options is the largest possible.

We start with the first option, then we select the second option which is as far
as possible from the first one — this can be intuitively considered as the negation of
the first option. The third option is as far away from both first and second options
as possible — this can be viewed the negation of negation — which is probably an
explanation of the imprecise “negation of negation” idea by the famous German
philosopher Georg Wilhelm Friedrich Hegel [7].

Interestingly, it is known that this approach leads an almost optimal coverage of
all possible options; see, e.g., [10].

A speculative application: explaining Weininger’s law of sexual attraction (and
the ubiquity of monogamy). According to a simplified model of sexual attraction
(see, e.g., [18]), each person’s psychological type can be described as a combina-
tion of prototypical male (m) and prototypical female (f) psychologies, to be more
precise, as ¢, -m+cy - f, where ¢;, + ¢y = 1. According to this model, the greatest
attraction is between the people (c,,cyr) and (c;n,c}) with opposite features, i.e.,
features for which ¢, = ¢; and ¢y = ¢},

Let us show that this is perfectly in line with the general symmetry idea. Namely,
in the first approximation, we can view male and female prototypes to be kind of
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similar, so we have a symmetry between m and f. In this case, according to our
result from Section 2, the optimal pair of persons should be invariant with respect to
this transformation — and, unless we have a person with ¢, = cy = 0.5, the only way
for the pair to be invariant if when the psychological characteristics of the second
person can be obtained from the characteristics of the first one by swapping m and
f — which is exactly Weininger’s equality.

The symmetry idea also explains why monogamy is ubiquitous and menage a
trois is rare — it is not possible to have a configuration of three people that is invariant
with respect to the swap m <> w. We can have configurations of 4, 6, etc., people
which are thus invariant — but in this case, they simply consist of several invariant
pairs, and there is no relation between persons from different pairs.
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