
Why embedding-decoder arrangement helps
machine learning

Miroslav Svı́tek, Olga Kosheleva, Vladik Kreinovich, and Nguyen Hoang Phuong

Abstract Usually, in machine learning, we directly train the neural network (or
any other machine learning tool) to generate the desired output for each given in-
put. However, recently, an alternative two-stage approach was shown to be more
efficient, when we first train the neural network to recognize pairs of input tuples
that leads to the same output, and then train another machine learning tool (called
decoder) to assign the desired value to each tuple. In this paper, we provide a theo-
retical explanation for this empirical success.

1 Formulation of the problem

What is machine learning: a very brief reminder. In general, machine learn-
ing is about learning a dependence y = f (x1, . . . ,xn) based on known examples(

x(k)1 , . . . ,x(k)n ,y(k)
)

of tuples that satisfy this dependence, i.e., tuples for which

y(k) = f
(

x(k)1 , . . . ,x(k)n

)
.

Miroslav Svı́tek
Faculty of Transportation Sciences, Czech Technical University in Prague, Konviktska 20
CZ-110 00 Prague 1, Czech Republic, e-mail: svitek@fd.cvut.cz

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: olgak@utep.edu

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: vladik@utep.edu

Nguyen Hoang Phuong
Artificial Intelligence Division, Information Technology Faculty, Thang Long University
Nghiem Xuan Yem Road, Hoang Mai District, Hanoi, Vietnam
e-mail: nhphuong2008@gmail.com

1



2 M. Svı́tek, O. Kosheleva, V. Kreinovich, N. H. Phuong

Traditional approach to machine learning. In the traditional approach to machine
learning, we directly train the machine learning tool – e.g., a deep neural network –
to predict y based on xi’s; see, e.g., [1, 3].

Embedding-decoder arrangement: an alternative to the traditional approach.
The paper [4], following ideas from [5], uses a different approach, in which:

• first, we use a machine learning tool to learn some embeddings of the in-
puts xi into values Xi = fi(xi) and some function F(X1, . . . ,Xn) for which
F( f1(x1), . . . , fn(xn)) = F( f1(x′1), . . . , fn(x′n)) if and only if f (x1, . . . ,xn) =
f (x′1, . . . ,x

′
n), and

• then, we use machine learning to come up with a decoder d(z) for which, for all
xi, we have:

d(F( f1(x1), . . . , fn(xn))) = f (x1, . . . ,xn).

On several examples, this two-stage approach is more efficient that the traditional
approach to machine learning.

A natural question: why is this two-stage approach more efficient?

What we do in this paper. In this paper, we explain the efficiency of the two-stage
approach.

2 Analysis of the problem and the resulting explanation

First, let us simplify the formulation of the problem. In order to explain the ef-
ficiency of the two-stage approach, let us reformulate it in a simpler form, ignoring
details that – as we will show – are not critical from the viewpoint of our explana-
tion. Specifically, instead of considering separately the functions that are solicited
on the first stage of the two-stage process – i.e., functions f1(x1), . . . , fn(xn), and
f (X1, . . . ,Xn) – let us consider a single function

G(x1, . . . ,xn)
def
= F( f1(x1), . . . , fn(xn)).

In these simplified terms, the two-stage process takes the following form:

• first, we look for a function G(x1, . . . ,xn) for which G(x1, . . . ,xn) = G(x′1, . . . ,x
′
n)

if and only if f (x1, . . . ,xn) = f (x′1, . . . ,x
′
n), i.e., equivalently, for which

f (x1, . . . ,xn) = d(G(x1, . . . ,xn)) for some 1-1 function d(z); and
• then, we look for the function d(z).

On each stage, we have, in effect, a search problem: out of all possible alternatives
(this time, alternatives are functions), we need to find a function that satisfies the
desired property. So, the question becomes: why is the two-stage search more effi-
cient than the usual one-stage search? To answer this question, let us analyze how
to estimate the time complexity of a search problem.



Why embedding-decoder arrangement helps machine learning 3

How to estimate the time complexity of a search problem? In general, if we have
N alternatives, and the list of possible alternatives is not sorted in any way, then the
exhaustive search takes, in the worst case, N computational steps, and, on average,
N/2 steps; see, e.g. [2]. For exhaustive search, the computation time T is therefore
proportional to N.

Of course, neural networks do not provide an exhaustive search of all possible
functions – sometimes, they cannot find the function, and sometimes, they only
provide an approximate function. Because of this, the actual computation time t –
be it worst-case or average-case – is usually smaller than T . The actual value of t
depends on the specifics of an algorithm. We do not know these specifics, so let us
come up with estimates of the computation time t based on our knowledge of the
time T . In other words, we need to find an algorithm a(T ) that would provide, for
each exhaustive search algorithm requiring time T , a reasonable estimate a(T ) for
the time t needed for a practical (non-exhaustive) search algorithm.

The numerical values of both times t and T depend on our choice of the mea-
suring unit: e.g., we can measure computation time in second, in milliseconds, in
minutes, etc. When we replace the original measuring unit by a new unit which is
c times smaller, than all numerical values multiply by c. For example, if we replace
minutes with seconds – which is c = 60 times smaller unit – then 2 minutes be-
comes 60 · 2 = 120 seconds. In general, under this change, instead of t and T , we
get t ′ = c · t and T ′ = c ·T .

There is no reason to believe that one unit of time is better than the other. So, it
makes sense to require that the function t = a(T ) should not change is we simply
change the unit of time. In other words, if we have t = a(T ), then for every c> 0, we
should have t ′ = a(T ′), where t ′ = c · t and T ′ = c ·T . Let us describe this property
in precise terms.

Definition. We say that a function a from positive real numbers to positive real
numbers is unit-invariant if for all possible t > 0, T > 0, and c > 0, when t = a(T ),

then we have t ′ = a(T ′), where we denoted t ′ def
= c · t and T ′ def

= c ·T .

Proposition. A function a(T ) is unit-invariant if and only if it has the form a(T ) =
a0 ·T for some constant a0 > 0.

Proof. It is easy to see that a linear function a(T ) = a0 ·T is unit-invariant.
Vice versa, let us assume that we have a unit-invariant function. Substituting the

expressions for t ′ and T ′ into the formula t ′ = a(T ′), we conclude that c ·t = a(c ·T ).
Here, t = a(T ), so this formula takes the form c · a(T ) = a(c · T ). This equality
should be true for all possible values c > 0 and t > 0. In particular, for T = 1, we
get a(c) = a0 · c, where we denoted a0

def
= a(1). The proposition is proven.

What we can conclude from this. So, our reasonable estimate for the computation
time of the actual algorithm takes the form t = a0 ·T .

Now, we are ready to provide a comparative analysis of the computation time of
both 1-stage and 2-stage searches.

1-stage case. Theoretically, we may have an infinite number of possible inputs, but
in the computer, whatever input we consider, it is represented by a finite number of



4 M. Svı́tek, O. Kosheleva, V. Kreinovich, N. H. Phuong

0s and 1s, and the number of such bits (0s and 1s) is limited by the size B bits of the
corresponding areas. The number of such binary sequences is this limited by 2B –
the overall number of binary sequences of length B. So, in practice, we have a finite
number of possible inputs and a finite number of possible outputs.

Let X denote the overall number of possible inputs (x1, . . . ,xn), and let Y denote
the overall number of all possible outputs y. Thus, if we do not impose any restric-
tions on the possible functions f (x1, . . . ,xn), then the number of possible functions
is equal to the number of possible functions from the set of X elements to the set
of Y elements. For each of X elements, we can have Y possible values, so each
function can be described as listing all X such values. The number of such tuples
of y-values is Y · . . . ·Y (X times), i.e., Y X . Thus, exhaustive search would require
time proportional to Y X : T = c0 ·Y X , for some coefficient c0, and the actual time is
equal to:

a0 ·T = a0 · c0 ·Y X .

2-stage case. On the first stage, we look not for a function, but for an equivalence
class of functions – modulo 1-1 transformation, i.e., modulo permutations of the set
of y’s. It is known that for a set of Y elements, there are exactly

Y ! def
= 1 ·2 · . . . ·Y

permutations. So, each equivalence class contains Y ! elements. (To be more precise,
some classes will have fewer elements – e.g., a constant is not changing under per-
mutation, so it forms a whole equivalence class, but such cases are rarely and can
be, in the first approximation safely ignored.)

In this first approximation, to estimate the number N1 of such equivalence classes,
we need to divide the overall number Y X of functions by the number Y ! of elements
in each class. As a result, we get:

N1 =
Y X

Y !
.

So, the computation time for the first stage in the exhaustive case would be equal to:

T1 = c0 ·
Y X

Y !
,

and the computation time of a realistic search algorithm implementing the first stage
will be equal to:

t1 = a0 ·T1 = a0 · c0 ·
Y X

Y !
.

In the second stage, we select one of the permutations. As we have mentioned,
the number of permutations is equal to N2 =Y !, so the exhaustive-case computation
time for the second case would be T2 = c0 ·N2 = c0 ·Y !, and the real computation
time of the second stage will be t2 = a0 ·T2 = a0 · c0 ·Y !.



Why embedding-decoder arrangement helps machine learning 5

Thus, the overall computation time t of the two-stage process is equal to the sum
of computation times of the two stages:

t = t1 + t2 = a0 · c0 ·
Y X

Y !
+a0 · c0 ·Y ! = a0 · c0 ·

(
Y X

Y !
+Y !

)
.

Comparing the 1-stage and 2-stage computation times explains the empirical
efficiency of the 2-stage approach. For both approaches, the computation time is
equal to a0 · c0 times some expression:

• the expression Y X for the 1-stage case, and
• the expression

Y X

Y !
+Y !

for the 2-stage case.

One can easily check that while the 2-stage case expression is the sum of two terms,
the 1-stage case expression is the product of the same two terms:

Y X

Y !
·Y ! = Y X .

In general, the product of any two sufficiently large numbers a and b is always larger
than their sum. Indeed, the difference between the product and the sum has the form:

a ·b− (a+b) = a · (b−1)− (b−1)−1 = (a−1) · (b−1)−1.

So, if a > 2 and b > 2, we have a−1 > 1 and b−1 > 1, thus (a−1) ·(b−1)> 1 and
therefore, (a−1) · (b−1)−1 > 0, i.e., a ·b− (a+b)> 0 and indeed a ·b > a+b.

In our case, both Y ! and Y X/Y ! are huge numbers – clearly larger than 2, so the
expression for the 1-stage case if larger than the expression for the 2-stage case.
Thus, the computation time needed for the 1-stage approach is larger than what is
needed for the 2-stage approach. This explains why the 2-stage approach is empiri-
cally more efficient.

3 Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395 (Center for Collective Impact in Earthquake Science C-CIES), and by the
AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research, De-
velopment and Innovation Office (NRDI), by the Institute for Risk and Reliability,



6 M. Svı́tek, O. Kosheleva, V. Kreinovich, N. H. Phuong

Leibniz Universitaet Hannover, Germany, and by the European Union under the
project ROBOPROX (No. CZ.02.01.01/00/22 008/0004590).

References

1. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
2. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT

Press, Cambridge, Massachusetts, 2022.
3. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Mas-

sachusetts, 2016.
4. J. Liu, O. Kitouni, N. Nolte, E. J. Michaud, M. Tegmark, and M. Williams, “Towards un-

derstanding grokking: an effective theory of representation learning”, Proceedings of the 36th
Conference on Neural Information Processing Systems NeurIPS 2022, New Orleans, Louisiana,
USA, November 28 – December 9, 2022, Article 2511, pp. 34651–34663.

5. A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra,Grokking: Generalization Beyond
Overfitting on Small Algorithmic Datasets, arXiv preprint arXiv:2201.02177, 2022.


