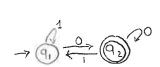
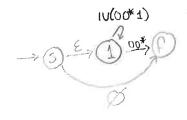

CS 3350 Automata, Computability, and Formal Languages Fall 2016, Test 1


Name: Name: Name:


1-2. Use a general algorithm to design a non-deterministic finite automaton recognizing the language $(1 \text{ U } 0)^*1$. After that, use the general algorithm to design a deterministic finite automaton recognizing this same language.

3. Use a general algorithm to transform the following finite automaton into the corresponding regular expression. This automaton has two states: a state q1 which is a start state, and a state q2 which is a final state. In the state q1, 0 leads to q2, and 1 leads to q1. In the state q2, 0 leads to q2, and 1 leads to q1.

$$R'_{S1} = R_{S1} \cup (R_{S1} R_{22} * R_{21})$$

$$= \Delta \cup (\emptyset ...) = \Delta$$

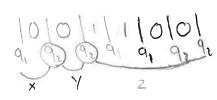
$$R'_{II} = R_{II} \cup (R_{I1} R_{22} * R_{21})$$

$$= \Delta \cup (00*\Delta)$$

$$R'_{II} = R_{II} \cup (R_{I1} R_{22} * R_{21})$$

$$R'_{II} = R_{II} \cup (R_{I1} R_{22} * R_{21})$$

$$Q \cup (00*\Delta) = 00*$$


$$R'_{S1} = R_{S1} \cup (R_{S1} R_{21} * R_{21})$$

$$Q \cup (\emptyset ...) = \emptyset$$

4. On the example of the automaton from Problem 3, explain, in detail, how the sequence 001100 will be presented as xyz according to the pumping lemma. For this sequence, check -- by tracing step-bystep -- that the sequence $xy^{i}z$ for i = 2 is indeed accepted by the automaton.

X-before 1strepeating state Y-between 1st and Ind rep. 2 - after 2nd rep

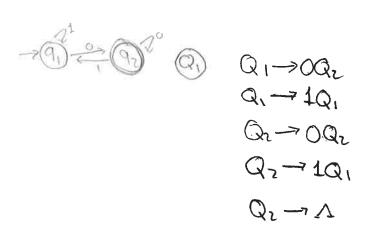
X=0 Y=0 2=1100

The first repecting state is as A suited a in less been the real month (3) miz 15 miles the the wind in 1100

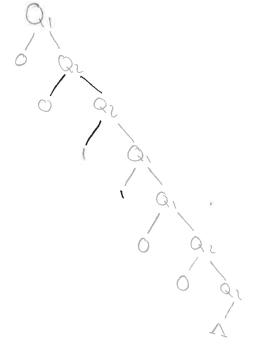
XXXX = 000 1100 1000 1000 XXXX 18 10000 1 XXXX

5. Use the Pumping Lemma to prove that the language L consisting of all the words of the type www is not regular, where w can be any word. Here:

• if w is an empty string, we get the word of


if w is ab, we get ababab,

etc.


Proof by Contradiction.

Let us asome that I response there are rempted to make the way word a from I whose length is so can be retrespend as severy. Where we provided the contract of a severy where the last of a severy contract of a severy word of the first set of a's so when as late and a other first set of a's so when as late and a other first so the fact of a's in the limit as in the other sets in the other sets in the other sets in the remaining wis. So xxxx ell hold according to painting that our over a sould be painting.

6. Use the general algorithm that we had in class to design a context-free grammar which generates exactly the words accepted by the automaton from Problem 3. Show how the word 001100 will be generated by this grammar.

