Solution to Homework Problem 23

Homework problem 23. Prove that the cubic root of 5 is not a rational number.

Solution. Let us prove it by contradiction. Let us assume that \(\sqrt[3]{5} \) is a rational number, i.e., \(\sqrt[3]{5} = a/b \) for some integers \(a \) and \(b \).

If the numbers \(a \) and \(b \) have a common factor, then we can divide both \(a \) and \(b \) by this factor and get the same ratio. Thus, we can always find \(a \) and \(b \) that have no common factors.

Let us now get a contradiction.

- Multiplying both sides of the above equality by \(b \), we get \(\sqrt[3]{5} \cdot b = a \).
- Cubing both sides, we get \(5b^3 = a^3 \).
- The left-hand side of this equality is divisible by 5, so the right-hand side \(a^3 = a \cdot a \cdot a \) must also be divisible by 5.
- Thus, \(a \) is divisible by 5, i.e., \(a = 5p \) for some integer \(p \).
- For \(a = 5p \), we have \(a^3 = (5p) \cdot (5p) \cdot (5p) = 5^3 \cdot p^3 \).
- Substituting \(a^3 = 5^3 \cdot p^3 \) into the formula \(5b^3 = a^3 \), we get \(5b^3 = 5^3 \cdot p^3 \).
- Dividing both sides by 5, we get \(b^3 = 5^2 \cdot p^3 \).
- The right-hand side of this equality is divisible by 5, so the left-hand side \(b^3 = b \cdot b \cdot b \) must also be divisible by 5.
- Thus, \(b \) is divisible by 5.
- So, \(a \) and \(b \) have a common factor 5 – which contradicts to the fact that \(a \) and \(b \) have no common factors.

This contradiction shows that our original assumption – that \(\sqrt[3]{5} \) is a rational number – is wrong. The statement is proven.