Task: Apply the general algorithm for transforming the finite automaton into a regular language (i.e., a language described by a regular expression) to the following automaton.

This automaton has two states: s (= straight-A student) and e (= everyone else); s is the starting state, it is also the final state. The only two symbols are A and B.

- From s, A leads to s, and B to e.
- From e, any symbol leads back to e.

Solution. We start with the described automaton:

\[
\begin{array}{c}
\text{s} \\
\text{A} \\
\text{B} \\
\text{e}
\end{array}
\]

According to the general algorithm, first we add a new start state ns and a few final state f, and we add jumps:

- from the old start state to the new start state, and
- from each old final state to the new final state.

As a result, we get the following automaton:

\[
\begin{array}{c}
\text{nfs} \\
\text{ε} \\
\text{s} \\
\text{A} \\
\text{B} \\
\text{e} \\
\end{array}
\]

Then, we need to eliminate the two intermediate states s and e one by one. We can start with eliminating s or with eliminating e. Let us show what happens in both cases.

First version, when we first eliminate the state s. First, we draw all possible arrows:
Now, to find expressions to place at all these arrows, we will use the general formula

\[R'_{i,j} = R_{i,j} \cup (R_{i,k}R_{k,k}^*R_{k,j}), \]

where \(k \) is the state that we are eliminating, i.e., in this case, the state \(k = s \).

By applying this formula, and by using simplification formulas described in the lecture, we get the following results:

\[
R'_{ns,e} = R_{ns,e} \cup (R_{ns,s}R_{s,e}^*) = \emptyset \cup (\Lambda A^* B) = \emptyset \cup A^* B = A^* B;
\]

\[
R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,s}R_{s,nf}) = \emptyset \cup (\Lambda A^* \Lambda) = \emptyset \cup A^* = A^*;
\]

\[
R'_{e,e} = R_{e,e} \cup (R_{e,s}R_{s,e}^*) = (A \cup B) \cup (\emptyset \ldots) = (A \cup B) \cup \emptyset = A \cup B;
\]

\[
R'_{e,nf} = R_{e,nf} \cup (R_{e,s}R_{s,nf}) = \emptyset \cup (\emptyset \ldots) = \emptyset \cup \emptyset = \emptyset.
\]

Thus, the 3-state a-automaton takes the following form:

Now, all that remains to do is to go from here to the 2-state a-automaton by eliminating the remaining state \(e \):

\[ns \rightarrow n_f \]
The final expression is the corresponding expression for \(R'_{ns,nf}\):
\[
R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,e} R_{e,e} R_{e,nf}) = \\
A^* \cup (A^* B (A \cup B)^* \emptyset) = A^* \cup \emptyset = A^*.
\]
The formula on the previous line is a regular expression corresponding to the original automaton.

First version – answer: \(A^*\).

Second version, when we first eliminate the state \(e\). First, we draw all possible arrows:

\[
\begin{array}{c}
ns \downarrow \\
\downarrow \\uparrow \\
s \\
\uparrow \\
nf
\end{array}
\]

Now, to find expressions to place at all these arrows, we will use the general formula
\[
R'_{i,j} = R_{i,j} \cup (R_{i,k} R_{k,k} R_{k,j}),
\]
where \(k\) is the state that we are eliminating, i.e., in this case, the state \(k = e\).

By applying this formula, and by using simplification formulas described in the lecture, we get the following results:
\[
\begin{align*}
R'_{ns,s} & = R_{ns,s} \cup (R_{ns,e} R_{e,e} R_{e,s}) = \Lambda \cup (\emptyset \ldots) = \Lambda \cup \emptyset = \Lambda; \\
R'_{ns,nf} & = R_{ns,nf} \cup (R_{ns,e} R_{e,e} R_{e,nf}) = \emptyset \cup (\emptyset \ldots) = \emptyset \cup \emptyset = \emptyset; \\
R'_{s,s} & = R_{s,s} \cup (R_{s,e} R_{e,e} R_{e,s}) = A \cup (B (A \cup B)^* \emptyset) = A \cup \emptyset = A; \\
R'_{s,nf} & = R_{s,nf} \cup (R_{s,e} R_{e,e} R_{e,nf}) = \Lambda \cup (B (A \cup B)^* \emptyset) = \Lambda \cup \emptyset = \Lambda.
\end{align*}
\]
Thus, the 3-state a-automaton takes the following form:

\[
\begin{array}{c}
\Lambda \\\n\Lambda \\
\emptyset
\end{array}
\]
Now, all that remains to do is to go from here to the 2-state a-automaton by eliminating the remaining state s:

![Diagram](image)

The final expression is the corresponding expression for $R'_{ns,nf}$:

$$R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,s}R^*_{s,s}R_{s,nf}) = \emptyset \cup (\Lambda A^* \Lambda) = A^*.$$

The formula A^* is also a regular expression corresponding to the original automaton.

Second version — answer: A^*.