Solution to Problem 10

Task: Transform the grammar consisting of rules

\[
S \rightarrow \varepsilon; \quad S \rightarrow ABS; \quad S \rightarrow ASB; \quad S \rightarrow SAB; \quad S \rightarrow SBA; \quad S \rightarrow BSA;
\]

\[
S \rightarrow SBA; \quad S \rightarrow SS
\]

where \(A\) and \(B\) are terminal symbols, into Chomsky normal form.

Solution.

Preliminary step. First, we introduce a new starting variable \(S_0\) and a rule \(S_0 \rightarrow S\), where \(S\) is the starting variable of the original grammar. So, the grammar takes the following form:

\[
S \rightarrow \varepsilon; \quad S \rightarrow ABS; \quad S \rightarrow ASB; \quad S \rightarrow SAB; \quad S \rightarrow SBA; \quad S \rightarrow BSA;
\]

\[
S \rightarrow SBA; \quad S \rightarrow SS; \quad S_0 \rightarrow S.
\]

Step 0. We eliminate non-Chomsky rules with right-hand side of length 0, i.e., with right-hand side an empty string and the left-hand side is not a starting variable. In the above grammar, there is one such rule: \(S \rightarrow \varepsilon\). To eliminate this rule, for each rule that has \(S\) in the right-hand side, we add another rule in which this symbol \(S\) is deleted.

In the above grammar, there are several such rules:

\[
S \rightarrow ABS; \quad S \rightarrow ASB; \quad S \rightarrow SAB; \quad S \rightarrow SBA; \quad S \rightarrow BSA;
\]

\[
S \rightarrow SBA; \quad S \rightarrow SS; \quad S_0 \rightarrow S.
\]

- For the rule \(S \rightarrow ABS\), if we delete the letter \(S\) from the right-hand side, we get the rule \(S \rightarrow AB\) that we add to our grammar.

- For the rule \(S \rightarrow ASB\), if we delete the letter \(S\) from the right-hand side, we get the same rule \(S \rightarrow AB\) that we have already added to our grammar.

- For the rule \(S \rightarrow ABS\), if we delete the letter \(S\) from the right-hand side, we get the same rule \(S \rightarrow AB\) that we have already added to our grammar.

- For the rule \(S \rightarrow BAS\), if we delete the letter \(S\) from the right-hand side, we get the rule \(S \rightarrow BA\) that we add to our grammar.
• For the rule $S \to BSA$, if we delete the letter S from the right-hand side, we get the same rule $S \to BA$ that we have already added to our grammar.

• For the rule $S \to BAS$, if we delete the letter S from the right-hand side, we get the same rule $S \to BA$ that we have already added to our grammar.

• For the rule $S \to SS$, if we delete the letter S from the right-hand side, we get the rules $S \to S$ – which means no change is done, and the rule $S \to \varepsilon$ – that we are eliminating. So, no new rules are added here.

• For the rule $S_0 \to S$, if we delete the letter S from the right-hand side, we get the rule $S_0 \to \varepsilon$ that we add to our grammar.

After we delete the rule $S \to \varepsilon$ and add the new rules $S \to AB$, $S \to BA$, and $S_0 \to \varepsilon$, we get the following grammar:

$$S \to ABS; \quad S \to ASB; \quad S \to SAB; \quad S \to SBA; \quad S \to BSA;$$

$$S \to SBA; \quad S \to SS; \quad S_0 \to S; \quad S \to AB; \quad S \to BA; \quad S_0 \to \varepsilon.$$

Step 1. On this step, we eliminate non-Chomsky rules in which the right-hand side has length 1, i.e., in which the right-hand side is a variable. In the above grammar, there is only one such rule: $S_0 \to S$. To eliminate this rule, for each rule $S \to w$ that has the variable S is the left-hand side (for any right-hand side w), we add a rule $S_0 \to w$.

In the current grammar, we have several rules with S in the left-hand side:

$$S \to ABS; \quad S \to ASB; \quad S \to SAB; \quad S \to SBA; \quad S \to BSA;$$

$$S \to SBA; \quad S \to SS; \quad S_0 \to S; \quad S \to AB; \quad S \to BA.$$

So, once we eliminate the rule $S_0 \to S$, we have to add rules $S_0 \to ABS$, etc. As a result, we get the following grammar:

$$S \to ABS; \quad S \to ASB; \quad S \to SAB; \quad S \to SBA; \quad S \to BSA;$$

$$S \to SBA; \quad S \to SS; \quad S \to AB; \quad S \to BA; \quad S_0 \to \varepsilon;$$

$$S_0 \to ABS; \quad S_0 \to ASB; \quad S_0 \to SAB; \quad S_0 \to SBA; \quad S_0 \to BSA;$$

$$S_0 \to SBA; \quad S_0 \to SS; \quad S_0 \to AB; \quad S_0 \to BA.$$

Step 2. On this step:

• For each terminal symbol a, we introduce an auxiliary variable V_a and a rule $V_a \to a$.

• Then, in each rule in which the right-hand side has 2 or more symbols and at least one of them is a terminal symbol, we replace each terminal symbol with the corresponding variable.
In our grammar, we have two terminal symbols A and B. So, we introduce two new variables V_A and V_B and two new rules $V_A \to A$ and $V_B \to B$.

In the rule $S \to ABS$, we replace A with V_A and B with V_B, and get the new rule $S \to V_A V_B S$. We do the same replacement with all other rules in which the right-hand side has 2 or more symbols and at least one of them is a terminal symbol. As a result, we get the following grammar:

$$S \to V_A V_B S; \quad S \to V_A S V_B; \quad S \to S V_A V_B; \quad S \to S V_B V_A; \quad S \to V_B S V_A;$$

$$S \to SV_B V_A; \quad S \to S S; \quad S \to V_A V_B; \quad S \to V_B V_A;$$

$S_0 \to V_A V_B S; \quad S_0 \to V_A S V_B; \quad S_0 \to S V_A V_B; \quad S_0 \to S V_B V_A; \quad S_0 \to V_B S V_A; \quad S_0 \to SV_B V_A; \quad S_0 \to S S; \quad S_0 \to V_A V_B; \quad S_0 \to V_B V_A.$

Step 3. At this step, we replace each rule of the type $V \to ABC$ with two rules: $V_{AB} \to AB$ for a new variable V_{AB} and $V \to V_{AB} C$. According to this algorithm, the rule $S \to V_A V_B S$ is replaced by two rules: $V_{AB} \to V_A V_B$ and $S \to V_{AB} S$. After we perform the same replacement for all other rules that have three or more symbols in the right-hand side, we get the following grammar:

$$V_{AB} \to V_A V_B; \quad S \to V_{AB} S; \quad V_{AS} \to V_A S; \quad S \to V_A S V_B; \quad V_{SA} \to S V_A;$$

$$S \to V_{SA} V_B; \quad V_{SB} \to S V_B; \quad S \to V_{SB} V_A; \quad V_{BS} \to V_B S; \quad S \to V_B S V_A;$$

$$S \to V_{SB} V_A; \quad S \to S S; \quad S \to V_A V_B; \quad S \to V_B V_A; \quad S_0 \to \varepsilon;$$

$S_0 \to V_{AB} S; \quad S_0 \to V_A S V_B; \quad S_0 \to S V_A V_B; \quad S_0 \to S V_B V_A; \quad S_0 \to V_B S V_A; \quad S_0 \to V_{SB} V_A; \quad S_0 \to S S; \quad S_0 \to V_A V_B; \quad S_0 \to V_B V_A.$

This grammar is already in Chomsky normal form, i.e., it only has three types of rules:

- rules of the type $S_0 \to \varepsilon$, where S_0 is the starting variable;
- rules of the type $V \to a$, where V is a variable and a is a terminal symbol; and
- rules of the type $V \to AB$, where V, A, and B are variables.