Task: Apply the general algorithm for transforming the finite automaton into a regular language (i.e., a language described by a regular expression) to the following automaton.

This automaton has two states: \(g \) (good student) and \(p \) (student on probation); \(g \) is the starting state, it is also the final state. The only three symbols are \(A \), \(B \), and \(F \).

- From \(g \), \(A \) and \(B \) lead back to \(g \), and \(F \) leads to \(p \).
- From \(p \), any symbol leads back to \(p \).

Solution. We start with the described automaton:

![Automaton Diagram]

According to the general algorithm, first we add a new start state \(ns \) and a few final state \(nf \), and we add jumps:

- from the old start state to the new start state, and
- from each old final state to the new final state.

As a result, we get the following automaton.

![Automaton Diagram]

Then, we need to eliminate the two intermediate states \(g \) and \(p \) one by one. We can start with eliminating \(g \) or with eliminating \(p \). Let us show what happens in both cases.

First version, when we first eliminate the state \(g \). First, we draw all possible arrows:
Now, to find expressions to place at all these arrows, we will use the general formula

$$R'_{i,j} = R_{i,j} \cup (R_{i,k}R^*_{k,k}R_{k,j}),$$

where k is the state that we are eliminating, i.e., in this case, the state $k = s$.

By applying this formula, and by using simplification formulas described in the lecture, we get the following results:

- $R'_{ns,p} = R_{ns,p} \cup (R_{ns,g}R^*_{g,g}R_{g,p}) = \emptyset \cup (A \cup B)^*F = \emptyset \cup (A \cup B)^* = (A \cup B)^*$;
- $R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,g}R^*_{g,g}R_{g,nf}) = \emptyset \cup (A \cup B)^* = \emptyset \cup (A \cup B)^* = (A \cup B)^*$;
- $R'_{p,p} = R_{p,p} \cup (R_{p,g}R^*_{g,g}R_{g,p}) = (A \cup B \cup F) \cup (\emptyset \ldots) = (A \cup B \cup F) \cup \emptyset = A \cup B \cup F$;
- $R'_{p,nf} = R_{p,nf} \cup (R_{p,g}R^*_{g,g}R_{g,nf}) = \emptyset \cup (\emptyset \ldots) = \emptyset \cup \emptyset = \emptyset$.

Thus, the 3-state a-automaton takes the following form:

Now, all that remains to do is to go from here to the 2-state a-automaton by eliminating the remaining state p:
The final expression is the corresponding expression for $R'_{ns,nf}$:

$$R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,p} R^*_p R_{p,nf}) = (A \cup B)^* \cup ((A \cup B)^* F(A \cup B \cup F)^* \emptyset) = (A \cup B)^* \cup \emptyset = (A \cup B)^*.$$

The formula on the previous line is a regular expression corresponding to the original automaton.

First version – answer: $(A \cup B)^*$.

Second version, when we first eliminate the state p. First, we draw all possible arrows:

Now, to find expressions to place at all these arrows, we will use the general formula

$$R'_{i,j} = R_{i,j} \cup (R_{i,k} R^*_k R_{k,j}),$$

where k is the state that we are eliminating, i.e., in this case, the state $k = p$.

By applying this formula, and by using simplification formulas described in the lecture, we get the following results:

$$R'_{ns,g} = R_{ns,g} \cup (R_{ns,p} R^*_p R_{p,g}) = \Lambda \cup (\emptyset \ldots) = \Lambda \cup \emptyset = \Lambda;$$

$$R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,p} R^*_p R_{p,nf}) = \emptyset \cup (\emptyset \ldots) = \emptyset \cup \emptyset = \emptyset;$$

$$R'_{g,g} = R_{g,g} \cup (R_{g,p} R^*_p R_{p,g}) = (A \cup B) \cup (F(A \cup B \cup F)^* \emptyset) = A \cup B \cup \emptyset = A \cup B;$$

$$R'_{g,nf} = R_{g,nf} \cup (R_{g,p} R^*_p R_{p,nf}) = \Lambda \cup (F(A \cup B \cup F)^* \emptyset) = \Lambda \cup \emptyset = \Lambda.$$

Thus, the 3-state a-automaton takes the following form:
Now, all that remains to do is to go from here to the 2-state a-automaton by eliminating the remaining state \(g \):

![Diagram of 2-state a-automaton](image)

The final expression is the corresponding expression for \(R'_{ns,nf} \):

\[
R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,g}R^*_gR_{g,nf}) = \emptyset \cup (\Lambda(A \cup B)^*\Lambda) = (A \cup B)^*.
\]

The formula \((A \cup B)^*\) is also a regular expression corresponding to the original automaton.

Second version – answer: \((A \cup B)^*\).