Solution to Problem 6

Task: Show, step by step, how the following pushdown automaton will recognize a sequence $ABAB$. This pushdown automaton has four states:

- the starting state s,
- the state a meaning that the number of As is larger than or equal to the number of Bs,
- the state b meaning that the number of Bs is larger than or equal to the number of As, and
- the final state f.

The transitions are as follows:

- From s to a, the transition is $\varepsilon, \varepsilon \rightarrow \varepsilon$.
- From a to a, the transitions are: $A, \varepsilon \rightarrow A$ and $A, B \rightarrow \varepsilon$.
- From a to b, the transition is $B, \varepsilon \rightarrow B$.
- From b to b, the transitions are: $B, \varepsilon \rightarrow B$ and $B, A \rightarrow \varepsilon$.
- From b to a, the transition is $A, \varepsilon \rightarrow A$.
- From a to f, the transition is $\varepsilon, \varepsilon \rightarrow \varepsilon$.
- From b to f, the transition is $\varepsilon, \varepsilon \rightarrow \varepsilon$.

Solution. Our pushdown automaton has the following form:
The main idea is that:

- first, we are in the state s; we then jump to a;
- then we see A, and we push A into the stack;
- then we see B, and we pop A from the stack;
- then we again see A, and we push A into the stack;
- then we again see B, and we pop A from the stack
- finally, we jump to the final state f.

So, we start in the starting state s with an empty stack.
Then, we jump to the state a:

The stack is still empty.

Then, we see letter A from the word $A B A B$, and we push A into the stack:
The stack has now only the letter A.
Then, we see the letter B from the word $ABAB$, and we pop A from the stack:

Now, the stack is empty.
Then, we see another letter A from the word $ABAB$, and we push A into the stack:
The stack has now only the letter A.
Then, we see the last letter B of the word $ABAB$, and we pop A from the stack:

Now, the stack is empty.
Finally, we jump into the final stats f:
We have read all the symbols of the word $ABAB$, and we are in the final state with an empty stack. Thus, the word $ABAB$ is accepted.

To illustrate these transitions, let us list all the symbols we read, all the states that this automaton goes through, and under each state, the contents of the corresponding stack, with \rightarrow indicating transition corresponding to reading a symbol:

<table>
<thead>
<tr>
<th>read</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>s</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>stack</td>
<td>\rightarrow</td>
<td>A</td>
<td>\rightarrow</td>
<td>A</td>
</tr>
</tbody>
</table>