Test 1

Problem 1. Why do we need to study automata? Provide two main reasons.

Problem 2–4. Let us consider the automaton that has two states: \(g \) (good student) and \(p \) (student on probation); \(g \) is the starting state, \(p \) is the final state. The only three symbols are \(A \), \(B \), and \(F \).

- From \(g \), \(A \) and \(B \) lead back to \(g \), and \(F \) leads to \(p \).
- From \(p \), any symbol leads back to \(p \).

Problem 2. Trace, step-by-step, how this finite automaton will check that the word \(ABF \) belongs to this language. Use the above tracing to find the parts \(x \), \(y \), and \(z \) of the word \(ABF \) corresponding to the Pumping Lemma. Check that the “pumped” word \(xyyz \) will also be accepted by this automaton.

Problem 3. Write down the tuple \((Q, \Sigma, \delta, q_0, F) \) corresponding to this automaton:

- \(Q \) is the set of all the states,
- \(\Sigma \) is the alphabet, i.e., the set of all the symbols that this automaton can encounter;
- \(\delta : Q \times \Sigma \rightarrow Q \) is the function that describes, for each state \(q \) and for each symbol \(s \), the state \(\delta(q, s) \) to which the automaton that was originally in the state \(q \) moves when it sees the symbol \(s \) (you do not need to describe all possible transitions this way, just describe two of them);
- \(q_0 \) is the staring state, and
- \(F \) is the set of all final states.

Problem 4. Use a general algorithm that we had in class to generate a context-free grammar corresponding to this automaton. Show how this grammar will generate the word \(ABF \).

Problem 5. Let \(A_1 \) be the automaton described in Problem 2. Let \(A_2 \) be an automaton that accepts all the strings that do not contain \(A \)s. This automaton has two states: the start state which is also final, and the sink state. The transitions are as follows:
• from the start state, B and F lead back to the start state, while A leads to the sink state;
• from the sink state, any symbol leads back to this state.

Use the algorithm that we had in class to describe the following two new automata:
• the automaton that recognizes the union $A_1 \cup A_2$ of the two corresponding languages, and
• the automaton that recognizes the intersection of the languages A_1 and A_2.

Problem 6. Use the general algorithm that we learned in class to design a non-deterministic finite automaton that recognizes the language $ab \cup a^*$:
• first, describe the automata for recognizing a and b;
• then, combine them into the automata for recognizing the concatenation ab and the Kleene star a^*;
• finally, combine the automata for ab and a^* into an automaton for recognizing the desired union of the two languages.

Problem 7. Use the general algorithm to transform the resulting non-deterministic finite automaton into a deterministic one.

Problem 8–9. Use a general algorithm to transform the finite automaton A_2 from Problem 5 into the corresponding regular expression.

Problem 10. Prove that the language L of all the words that have fewer a’s than b’s is not regular.