Solution to Problem 6

Task: Show, step by step, how the following pushdown automaton – that checks whether a word consisting of letters e and s corresponds to a balanced budget – will accept the word $eses$. This pushdown automaton has three states:

- the starting state s,
- the state b meaning that so far, we have earned at least as much as we spent, and
- the final state f.

The transitions are as follows:

- From s to b, the transition is $\varepsilon, \varepsilon \rightarrow \$;
- From b to b, the transitions are: $e, \varepsilon \rightarrow d$ and $s, d \rightarrow \varepsilon$.
- From b to f, the transition is: $\varepsilon, \$ \rightarrow \varepsilon$.

Solution. Our pushdown automaton has the following form:

\[
\begin{array}{c}
 s \\
 e, \varepsilon \rightarrow \$
\end{array}
\hspace{1cm}
\begin{array}{c}
 b \\
 e, \varepsilon \rightarrow d \\
 s, d \rightarrow \varepsilon \\
 \varepsilon, \$ \rightarrow \varepsilon
\end{array}
\hspace{1cm}
\begin{array}{c}
 f \\
 \varepsilon, \varepsilon \rightarrow \$
\end{array}
\]

We start in the starting state s with an empty stack:

\[
\begin{array}{c}
 s \\
 e, \varepsilon \rightarrow \$
\end{array}
\hspace{1cm}
\begin{array}{c}
 b \\
 e, \varepsilon \rightarrow d \\
 s, d \rightarrow \varepsilon \\
 \varepsilon, \$ \rightarrow \varepsilon
\end{array}
\hspace{1cm}
\begin{array}{c}
 f \\
 \varepsilon, \varepsilon \rightarrow \$
\end{array}
\]

We want to eventually reach the final state, and the only way to get out of the starting state is to use the rule $\varepsilon, \varepsilon \rightarrow \$ and go to state b.
The stack now contains the dollar sign. After that, we read the first symbol e and thus, use the rule $e, \varepsilon \rightarrow d$:

The stack now contains a symbol d on top of the dollar sign. Then, we read the next symbol s and use the rule $s, d \rightarrow \varepsilon$:

Because of this rule, the top symbol d is popped out of the stack, so we only have the dollar sign in the stack. Now, we again read the symbol e and use the rule $e, \varepsilon \rightarrow d$:

The stack now contains a symbol d on top of the dollar sign. Then, we read the last symbol s and use the rule $s, d \rightarrow \varepsilon$:

2
We have read all the symbols of the word. The stack now contains only one symbol – the dollar sign. So, to get to the final state, we can use the rule $\varepsilon, \$ \rightarrow \varepsilon$:

$$
\begin{align*}
\varepsilon, \varepsilon & \rightarrow d \\
\varepsilon, \$ & \rightarrow \varepsilon \\
\end{align*}
$$

We are now in the final state with an empty stack, so the word *eses* is accepted.

To illustrate these transitions, let us list all the symbols we read, all the states that this automaton goes through, and under each state, the contents of the corresponding stack, with \rightarrow indicating transition corresponding to reading a symbol:

<table>
<thead>
<tr>
<th>read</th>
<th>e</th>
<th>s</th>
<th>e</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>s</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>stack</td>
<td>$$</td>
<td>$$</td>
<td>$$</td>
<td>$$</td>
</tr>
</tbody>
</table>

3