Solution to Homework 9

Background. In Problem 7, we considered a grammar with rules $I \rightarrow +U$, $I \rightarrow -U$, $I \rightarrow U$, $U \rightarrow DU$, $U \rightarrow D$, $D \rightarrow 0$, and $D \rightarrow 1$.

Tasks:

1. Use a general algorithm to construct a (non-deterministic) pushdown automaton that corresponds to context-free grammar described in Problem 7.

2. Show, step by step, how the word +101 will be accepted by this automaton.

Solution to Task 1. By using the general algorithm, we get the following pushdown automaton:
Solution to Task 2. Let us show how this is done on the example of the word +110 generated by the above automaton:

\[I \rightarrow +U \rightarrow +DU \rightarrow +1U \rightarrow +1DU \rightarrow +11U \rightarrow +11D \rightarrow +110. \]

To make this derivation clearer, let us mark the variables \(U \) and \(D \) corresponding to different transitions by subscripts:

\[I \rightarrow +U_1 \rightarrow +D_1U_2 \rightarrow +1U_2 \rightarrow +1D_2U_3 \rightarrow +11U_3 \rightarrow +11D_3 \rightarrow +110. \]

Let us now trace what our pushdown automaton will do. We start in the state \(s \) with an empty stack:
The only thing we can do when in the state s is push the dollar sign into the stack and get to the intermediate state i:
The contents of the stack is as follows:

When we are in the state i, the only thing we can do is push the starting variable I into the stack and go into the working state w.

4
Now, the stack contains the starting variable on top of the dollar sign:

\[
\begin{array}{c}
I \\
\$ \\
\end{array}
\]

Now that we are in the working state, we can start following the rules that were used to derive the word +110. The first rule was \(I \rightarrow +U \), or, to be precise, \(I \rightarrow +U_1 \). As we have mentioned, this rule is implemented in two steps:

1. first, we pop \(I \) and push the last symbol of the right-hand side – in this cases, the symbol \(U \) (that corresponds to the first occurrence \(U_1 \)) – into the stack, getting into the auxiliary state \(a_1 \);

2. then, we push \(+ \) into the stack, and go back to the working state \(w \).

Let us illustrate this step by step.

First, we pop \(I \), push \(U \), and go into the state \(a_1 \):
The stack will now have U instead of the original I:

```
U
$  
```

Then, we push $+$ into the stack and go back to working state w:

6
The stack will now have + on top of its previous contents:

```
+  
U  
$  
```

Now, the symbol + is top of the stack. The only thing we can do if a terminal symbol is on top of the stack is use one of the rules of the type $x, x \rightarrow \varepsilon$ where x stands for the corresponding terminal symbol.

In our case:

- since the terminal symbol on top of the stack is the symbol +,
- we need to use the rule $+, + \rightarrow \varepsilon$,

i.e., we read the symbol + from the original word +110 and pop the top symbol + from the stack. We remain in the same state w, but the stack changes. The stack now has the following form:
In the derivation of our word, next, we use the rule $U \rightarrow DU$. As before, this rule is implemented in two steps:

- first, we pop U and push the last symbol of the right-hand side – in this cases, the symbol U into the stack, getting into the auxiliary state a_3;
- finally, we push D into the stack, and go back to the working state w.

Let us illustrate this step by step.

First, we pop U, push U, and go into the state a_3:

The stack remains unchanged. Next, we push D into the stack and get back to the working state:
The stack will now have D on top:

\[
\begin{array}{c}
D \\
U \\
\$
\end{array}
\]

Then, we use the rule $D \to 1$, which corresponds to the rule $\varepsilon, D \to 1$ of the pushdown automaton. Namely, we replace D on top of the stack with 1.
Now, the stack has the form:

```
1
U
$
```

On top of the stack is a terminal symbol 1. The only way to delete it from the stack is to use the rule $1, 1 \rightarrow \varepsilon$, i.e., to read symbol 1 and pop 1 from the top of the stack. We still remain in the working state, but the stack changes to

```
U
$
```

Next, we again use the rule $U \rightarrow DU$ of the grammar. So, first, we replace U on top of the stack with U and go to state a_3:
The stack takes the following form:

\[
\begin{array}{c}
U \\
S
\end{array}
\]

Next, we push D into the stack and go back to the working state:
The stack now has the form:

\[
\begin{array}{c}
D \\
U \\
$ \\
\end{array}
\]

Next, we use the rule \(D \to 1 \) from the grammar, which corresponds to the rule \(\varepsilon, D \to 1 \) of the pushdown automaton. We replace \(D \) on top of the stack with 1, and stay in the same state \(w \). The stack now takes the following form:

\[
\begin{array}{c}
1 \\
U \\
$ \\
\end{array}
\]

On top of the stack is a terminal symbol 1. So eliminate this symbol from the stack, we use the rule \(1, 1 \to \varepsilon \), i.e., we read the symbol 1 and delete 1 from the top of the stack. Then, the stack takes the following form:
After this, we use the rule $U \rightarrow D$ of the grammar, that corresponds to the rule $\varepsilon, U \rightarrow D$ of the pushdown automaton. Namely, we replace U on top of the stack with D. Thus, the stack takes the following form:

\[
\begin{array}{c}
D \\
\$ \\
\end{array}
\]

Then, we use the rule $D \rightarrow 0$ of the grammar, that corresponds to the rule $\varepsilon, D \rightarrow 0$ of the pushdown automaton. Namely, we replace D on top of the stack with 0. Thus, the stack takes the following form:

\[
\begin{array}{c}
0 \\
\$ \\
\end{array}
\]

On top of the stack is a terminal symbol 0. So eliminate this symbol from the stack, we use the rule $0, 0 \rightarrow \varepsilon$, i.e., we read the last symbol 0 of the word and delete 0 from the top of the stack. Then, the stack takes the following form:

\[
\begin{array}{c}
\$ \\
\end{array}
\]

We have read all the symbols of the original word, and we only have the dollar sign remaining in the stack. Thus, we can use the rule $\varepsilon, \$, $\rightarrow \varepsilon$ to delete the dollar sign from the stack and to move to the final state f:

13
The stack is now empty. We have read all the symbols of the given word and we end up in the final state with the empty stack. Thus, the word +110 is accepted.

A graphical description of the transitions.

<table>
<thead>
<tr>
<th>read</th>
<th>state</th>
<th>stack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>read</th>
<th>state</th>
<th>stack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>$</td>
</tr>
</tbody>
</table>
| | w | $ | 14