
Automata, Spring 2023, Solutions to Final Exam

Problem 1. Finite automata and regular languages.

Problem 1a. Design a finite automaton for recognizing words that contain at
least one letter. Assume that the input strings contain only symbols a and b.
The easiest is to have two states:

� the starting state s indicating that we have not yet read any letters; and

� the state f indicating that we have already read at least one letter.

You just need to describe transitions between these states, and which states are
final. Show, step-by-step, how your automaton will accept the word aba.

Solution.

� from s, any symbol leads to f ;

� from f , any symbol leads back to f .

The final state is f . Derivation of aba is as follows:

| a | b | a |
s f f f
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Problem 1b. Explain why in most computers binary numbers are represented
starting with the lowest possible digit.

Solution. In most actual computers, the representation of a number starts with
the least significant digit, since all arithmetic operations like addition, subtrac-
tion, or multiplication start with the least significant digit. So, if we store the
number the way we write numbers, most significant digits first, computers will
have to waste time going through all the digits until they come up with the least
significant digit and start the actual computations. To speed up computations,
representations therefore start with the least significant digits.
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Problem 1c. On the example of the above automaton, show how the word aba
can be represented as xyz in accordance with the pumping lemma.

Solution. Here, the first repeating state is f :

| a | b | a |
s f f f

So, x = a, y = b, and z = a.
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Problem 1d. Use a general algorithm to describe a regular expression corre-
sponding to the finite automaton from the Problem 1a. Start by eliminating
the state s. (If you are running out of time, it is Ok not to finish, just eliminate
the first state.)

Solution. We start with the described automaton:

����- s -�����
��fa, b �

a, b

According to the general algorithm, first we add a new start state ns and a few
final state f , and we add jumps:

� from the new start state ns to the old start state, and

� from each old final state to the new final state nf .

As a result, we get the following automaton.

-���� -ns ����- s -����fa, b �

a, b

�����
��nf-εε

Then, we need to eliminate the two intermediate states s and f one by one. In
general, we have a formula

R′
i,j = Ri,j ∪ (Ri,kR

∗
k,kRk,j),

where k is the state that we are eliminating. In this case, we have k = s, so

R′
i,j = Ri,j ∪ (Ri,sR

∗
s,sRs,j).
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So, we have the following:

R′
ns,f = Rns,f ∪ (Rns,sR

∗
s,sRs,f ) = ∅ ∪ (Λ∅∗(a ∪ b)) = ΛΛ(a ∪ b) = a ∪ b;

R′
ns,nf = Rns,nf ∪ (Rns,sR

∗
s,sRs,nf ) = ∅ ∪ (Λ∅∗∅) = ∅ ∪ ∅ = ∅;

R′
f,f = Rf,f ∪ (Rf,sR

∗
s,sRs,f ) = a ∪ b ∪ (∅ . . .) = a ∪ b;

R′
f,nf = Rf,nf ∪ (Rf,sR

∗
s,sRs,nf ) = Λ ∪ (∅ . . .) = Λ.

Thus, the 3-state a-automaton takes the following form:

����-

����

�����
��ns

f

nf-
�
�

�
���

@
@

@
@@R

?

a ∪ b

∅

a ∪ b

Λ

The final expression is the corresponding expression for R′
ns,nf :

R′
ns,nf = Rns,nf ∪ (Rns,fR

∗
f,fRf,nf ) =

∅ ∪ ((a ∪ b)(a ∪ b)∗Λ) =

(a ∪ b)(a ∪ b)∗.

The last expression is a regular expression corresponding to the original au-
tomaton.
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Problem 1e-f. The resulting language can be described by a regular expres-
sion (a∪b)(a∪b)∗. Use a general algorithm to transform this regular expression
into a finite automaton: first a non-deterministic one, then a deterministic one.

Solution. We start with the standard non-deterministic automata for recog-
nizing the words p and r:

-���� �����
��-a -���� �����
��-b

Then, we use the general algorithm for the union to design a non-deterministic
automaton for recognizing the language a ∪ b:

-���� �����
��-a

-���� �����
��-b

-�����
��

@
@@ ε

ε

Now, we apply a standard algorithm for the Kleene star, and we get the following
non-deterministic automaton for (a ∪ b)∗:

-���� �����
��-a

-���� �����
��-b

�����
��

@
@@ ε

ε

�����
��- -ε
?

ε

6

ε

Finally, we apply concatenation and get a non-deterministic automaton for the
language (a ∪ b)(a ∪ b)∗:
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-���� ����-a

-���� ����-b

-�����
��

@
@@ ε

ε -���� �����
��-a

-���� �����
��-b

�����
��

@
@@ ε

ε

�����
�� -ε
?

ε

6

ε

?

6

ε

ε

To get a deterministic finite automation, first, we enumerate the states:

-����2 ����4-a

-����3 ����6-b

-����1 �
��

@
@@ ε

ε -����8 ����10�
��-a

-����9 �����
��11-b

����7 �
��

@
@@ ε

ε

����5�
�� -ε
?

ε

6

ε

?

6

ε

ε

Then, we get the following deterministic automaton:
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Problem 2. Beyond finite automata: pushdown automata and context-free
grammars

Problem 2a. Prove that it is not possible to have an automaton that, given
a sequence of student’s grades – such as ABA – checks whether this student’s
GPA is larger than 3.5 or not. Hint: for a student who only gets As and Bs,
GPA is larger than 3.5 if and only if this student has more As than Bs.

Solution We will prove it by contradiction. Let us assume that the language
L – of all sequences of grades for which GPA> 3.5 – is regular, and let us show
that this assumption leads to a contradiction.

Since this language is regular, according to the Pumping Lemma, there exists
an integer p such that every word from L whose length len(w) is at least p can
be represented as a concatenation w = xyz, where:

� y is non-empty;

� the length len(xy) does not exceed p, and

� for every natural number i, the word xyiz
def
= xy . . . yz, in which y is

repeated i times, also belongs to the language L.

Let us take the word w = BpAp+1 in which first B is repeated p times, then
A is repeated p+1 times. The length of this word is p+(p+1) = 2p+1 > p. So,
by pumping lemma, this word can be represented as w = xyz with len(xy) ≤ p.
This word starts with xy, and the length of xy is smaller than or equal to p.
Thus, xy is among the first p symbols of the word w – and these symbols are
all Bs. So, the word y only has Bs.

Thus, when we go from the word w = xyz to the word xyyz, we add Bs, and
we do not add any As. In the word w, we have exactly one more As than Bs.
So, in the word xyyz, we added at least one B, so the number of As is no longer
larger than the number of Bs. Thus, the word xyyz cannot be in the language
L, since by definition L only contains words that contain more As than Bs.

On the other hand, by Pumping Lemma, the word xyyz must be in the
language L. So, we proved two opposite statements:

� that this word is not in L and

� that this word is in L.

This is a contradiction.
The only assumption that led to this contradiction is that L is a regular

language. Thus, this assumption is false, so L is not regular.
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Problem 2b. Use a general algorithm to transform the finite automaton from
the Problem 1a into a context-free grammar (CFG). Show, step-by-step, how
this CFG will generate the word aba.

Solution. According to the general algorithm, the corresponding grammar
should have two variables S and F , and the following rules:

S → aF, S → bF, F → aF, F → bF, F → ε.

The word aba is accepted by the finite automaton as follows:

| a | b | a |
s f f f

Thus, its derivation takes the following form:

S → aF → abF → abaF → aba.
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Problem 2c. For the context-free grammar from the Problem 2b, show how the
word aba can be represented as uvxyz in accordance with the pumping lemma.

Solution. In terms of a tree, the derivation of the word aba can be represented
as follows:
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�
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@
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� ��
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���

H
HHH

HHH
HHH

HHH
HHH

Here, u = ab, v = a, and x = y = z = ε.
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Problem 2d. Use a general algorithm to translate the CFG from 2b into
Chomsky normal form.

Solution.

Preliminary step. We add a new starting variable S0 and a rule S0 → S:

S → aF, S → bF, F → aF, F → bF, F → ε, S0 → S.

Step 0. We need to eliminate the rule F → ε. This means adding the rules
S → a, S → b, F → a, and F → b: :

S → aF, S → bF, F → aF, F → bF, S0 → S,

S → a, S → b, F → a, F → b.

Step 1. We eliminate the rule S0 → S by adding the rules S0 → aF , S0 → bF ,
S0 → a, and S0 → b:

S → aF, S → bF, F → aF, F → bF,

S → a, S → b, F → a, F → b,

S0 → aF, S0 → bF, S0 → a, S0 → b.

Step 2. We introduce three new variables Va and Vb, replace a and b in length-2
right-hand sides with Va and Vb, and add rules Va → a and Vb → b:

S → VaF, S → VbF, F → VaF, F → VbF,

S → a, S → b, F → a, F → b,

S0 → VaF, S0 → VbF, S0 → a, S0 → b, Va → a, Vb → b.

This is already Chomsky normal form.

11



Problem 2e. Use a general algorithm to translate the CFG from 2b into an
appropriate push-down automaton. Explain, step-by-step, how this automaton
will accept the word aba.

Solution.

-���� ����-ε, ε → $

?
ε, ε → S

ε, F → ε
a, a → ε
b, b → ε�

s i

w -ε, S → F ����a1�
ε, ε → a

-ε, S → F ����a2�
ε, ε → b

-ε, F → F ����a3�
ε, ε → a

� ε, F → F����a4 -
ε, ε → b

������
��f ε, $ → ε

The word aba is derived as follows:

S → aF → abF → abaF → aba.

So, we have the following acceptance by the pushdown automaton:

a b a
s i w a1 w w a2 w w a1 w w w f

$ S F a F F b F F a F $

$ $ F $ $ F $ $ F $

$ $ $
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Problem 2f. Use the general stack-based algorithms to show:

� how the compiler will transform a Java expression 5− 8− 23 into inverse
Polish (postfix) notation, and

� how it will compute the value of this expression.

Solution. Let us show, step by step, how the above expression is transformed
into the postfix form:

5 − 8 − 23
5 8 − 23 −

− − − −

Let us now show how this expression will be computed:

5 8 − 23 −
5 8 −3 23 −26

5 −3
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Problem 3. Beyond pushdown automata: Turing machines

Problem 3a. According to medical doctors, a healthy lifestyle is when you
have the same number of hours:

� to work (we will denote an hour when a person worked by t, from trabajar),

� to eat and have other types of fun (c, from comer), and

� to sleep (d, from dormir).

In a single day, this means 8 hours for each of these three categories; for a
month, it means 240 hours of each, etc. Participants in an experiment write
down every hour what they are doing.

� Some of the resulting sequences are healthy, e.g., tcdtcd.

� Other sequences are not healthy, e.g., tttcd.

Prove that the language L of all healthy sequences is not context-free (and
therefore, cannot be recognized by a pushdown automaton).

Solution: Proof by contradiction. Let us assume that this language is context-
free. Then, by the pumping lemma for context-free grammars, there exists an
integer p such that every word w from this language whose length is at least
p can be represented as w = uvxyz, where len(vy) > 0, len(vxy) ≤ p, and for
every i, we have uvixyiz ∈ L.

Let us take the word w = tpcpdp ∈ L. The length of this word is 3p > p, so
this word can be represented as w = uvxyz.

Where is vxy? Since the length of this part does not exceed p, this word
cannot contain all three letters – otherwise, it will have to contain all the c
symbols – there are p of these symbols – and also at least one t and at least one
d, so vxy will have a length at least p + 2, but its length is ≤ p. So, we have
the following possible cases:

� vxy is in t’s;

� vxy is between t’s and c’s;

� vxy is in c’s;

� vxy is between c’s and d’s; or

� vxy is in d’s.

In the first case, v and y contain only t’s. So, when we go from uvxyz to
uvvxyyz, we add t’s, but we do not add c’s; thus, the desired balance between
numbers of t’s and c’s is disrupted, and so uvvxyyz ̸∈ L – while by pumping
lemma, we should have uvvxyyz ∈ L. Thus, this case is impossible.

In the second case, v and y contain only t’s and c’s. So, when we go
from uvxyz to uvvxyyz, we add t’s and c’s, but we do not add any d’s; thus,
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the desired balance between numbers of t’s, c’s, and d’s is disrupted, and so
uvvxyyz ̸∈ L – while by pumping lemma, we should have uvvxyyz ∈ L. Thus,
this case is impossible.

Similarly, we can prove that the other cases are also not possible. So, none
of the cases is possible, which means that our assumption that the language L
is context-free is wrong.
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Problem 3b-c. Use a general algorithm to design a Turing machine that
accepts exactly all sequences accepted by a finite automaton from Problem 1a.
Show, step-by-step, how this Turing machine will accept the word aba. Describe,
for each step, how the state of the tape can be represented in terms of states of
two stacks.

Solution: This Turing machine will have the following rules:

� start, − → s, R

� s, a → f , R

� s, b → f , R

� f , a → f , R

� f , b → f , R

� s, − → accept

� f , − → reject

Tracing:

Moment 1:

– a b a – . . . start

Here, the left stack is empty, the right stack has the following form:

–
a
b
a

Moment 2:

– a b a – . . . f

Here, the stacks have the following form:

–
a
b
a
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Moment 3:

– a b a – . . . f

Here, the stacks have the following form:

a
–

b
a

Moment 4:

– a b a – . . . f

Here, the stacks have the following form:

b
a
–

a

Moment 5:

– a b a – . . . f

Here, the stacks have the following form:

a
b
a
–

–

Moment 6:

– a b a – . . . accept

The machine halts, the stack remain the same.
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Problem 3d-e. Design Turing machines for computing a + 2 in unary and in
binary codes. Trace both Turing machines for a = 1.

Solution: unary case. The rules are:

start, – → R, moving
moving, 1 → R

moving, – → R, 1, added1
added1, – → 1, L, back

back, 1 → L
back, – → halt

Tracing:

– 1 – – – – – . . . start

– 1 – – – – – . . . moving

– 1 – – – – – . . . moving

– 1 1 – – – – . . . added1

– 1 1 1 – – – . . . back

– 1 1 1 – – – . . . back

– 1 1 1 – – – . . . back

– 1 1 1 – – – . . . halt

Solution: binary case. The rules are:

start, – → R, skip
skip, 0 → R, moving
skip, 1 → R, moving
moving, 1 → 0, R

moving, 0 → 1, L, back
moving, – → 1, L, back

back, 0 → L
back, 1 → L

back, – → halt

Here is tracing:

– 1 – – – – – . . . start

– 1 – – – – – . . . skip

– 1 – – – – – . . . moving

– 1 1 – – – – . . . back

– 1 1 – – – – . . . back

– 1 1 – – – – . . . halt
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Problem 4. Beyond Turing machines: computability

Problem 4a. Formulate Church-Turing thesis. Is it a mathematical theorem?
Is it a statement about the physical world?

Solution: Church-Turing thesis states that any function that can be computed
on any physical device can also be computed by a Turing machine (or, equiva-
lently, by a Java program).

Whether this statement is true or not depends on the properties of the
physical world. Thus, this statement is not a mathematical theorem, it is a
statement about the physical world.
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Problem 4b. Prove that the halting problem is not algorithmically solvable.

Solution: The halting problem is the problem of checking whether a given
program p halts on given data d. We can prove that it is not possible to have an
algorithm haltChecker(p,d) that always solves this program by contradiction.
Indeed, suppose that such an algorithm – i.e., such a Java program – exists.
Then, we can build the following auxiliary Java program:

public static int aux(String x)

{if(haltChecker(x,x))

(while(true) x= x;}

else{return 0;}}

If aux halts on aux, then haltChecker(aux,aux) is true, so the program aux goes
into an infinite loop – and never halts. On the other hand, if aux does not halt
on aux, then haltChecker(aux,aux) is false, so the program aux returns 0 – and
thus, halts. In both cases, we get a contradiction, which proves that haltChecker
is not possible.
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Problem 4c. Not all algorithms are feasible, but, unfortunately, we do not have
a perfect definition is feasibility. Give a current formal definition of feasibility,
explain what is means to be practically feasible, and give two examples:

� an example of an algorithm’s running time which is feasible according to
the current definition but not practically feasible, and

� an example of an algorithm’s running time which is practically feasible
but not feasible according to the current definition.

These examples must be different from what we studied in class.

Solution: An algorithm A is called feasible if its running time tA(x) on each in-
put x is bounded by some polynomial P (len(x)) of the length len(x) of the input:
tA(x) ≤ P (len(x)). In other words, the algorithm is feasible if for each length
n, the worst-case complexity twA(n) = max{tA(x) : len(x) = n} is bounded by a
polynomial: twA(n) ≤ P (n).

An algorithm is practically feasible if for all inputs of reasonable length, it
finishes its computations in reasonable time.

Time complexity twA(n) = 10200 is a constant – thus a polynomial, so from
the viewpoint of the formal definition, it is feasible. However, this number is
larger than the number of particles in the Universe, so it is clearly not practically
feasible.

On the other hand, the function exp(10−22 ·n) is an exponential function and
thus, grows faster than an polynomial, but even for largest realistic lengths n –
e.g., for n = 1018 – the resulting value is smaller than 3 and is, thus, perfectly
practically feasible.
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Problem 4d. Briefly describe what is P, what is NP, what is NP-hard, and
what is NP-complete. Is P equal to NP?

Solution: P is the class of all the problems that can be solved in polynomial
time.

NP is the class of all the problems for which, once we have a candidate for
a solution, we can check, in polynomial time, whether it is indeed a solution.

A problem is called NP-hard if every problem from the class NP can be
reduced to this problem.

A problem is called NP-complete if it is NP-hard and itself belongs to the
class NP.

At present, no one knows whether P is equal to NP. Most computer scientists
believe that these two classes are different.
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Problem 4e. Give an example of an NP-complete problem: what is given, and
what we want to find.

Solution. An example of an NP-complete problem is propositional satisfiabil-
ity:

� given: a propositional formula, i.e., any expression obtained from Boolean
variables by using “and”, “or”, and “not”,

� find: the values of the Boolean variables that makes this formula true.
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Problem 4f. Give definitions of a recursive (decidable) language and of a
recursively enumerable (Turing-recognizable) language.

Solution. A language L is called decidable if there exists an algorithm (or,
equivalently, a Turing machine) that:

� given a word,

� returns “yes” or “no” depending on whether this word belongs to this
language or not.

A language is called semi-decidable, Turing-recognizable, or recursively enumer-
able if there exists a Turing machine that:

� given a word w,

� returns “yes” if and only if the word w belongs to the language L.
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