Solution to Problem 10

Task. Transform the grammar from Homework 7 into Chomsky normal form.

Solution. The grammar from Homework 7 has the following rules:

$$N \to L$$
; $N \to NL$; $N \to ND$; $L \to a$; $D \to 0$; $D \to 1$

Preliminary step. First, we introduce a new starting variable S_0 and a rule $S_0 \to N$, where N is the starting variable of the original grammar. In our grammar, the starting variable is I, so we end up with the following rules:

$$N \to L; N \to NL; N \to ND; L \to a; D \to 0; D \to 1; S_0 \to N$$

Step 0. On this step, we eliminate non-Chomsky rules with right-hand side of length 0, i.e., with right-hand side an empty string and the left-hand side is not a starting variable.

In the above grammar, there are no such rules, so we do not do anything on this step.

Step 1. On this step, we eliminate non-Chomsky rules in which the right-hand side has length 1, i.e., in which the right-hand side is a variable. In the above grammar, there are several such rules, we will eliminate them one by one.

The first such rule is $N \to L$. To eliminate this rule, for each rule $L \to w$ that has the variable L is the left-hand side (for any right-hand side w), we add a rule $N \to w$. In the current grammar, we have only one such rule: $L \to a$, so we add the rule $N \to a$. As a result, we get the following grammar:

$$N \to NL$$
; $N \to ND$; $L \to a$; $D \to 0$; $D \to 1$; $S_0 \to N$; $N \to a$

The next rule that need to be eliminated on this stage is $S_0 \to N$. To eliminate this rule, for each rule $N \to w$ that has the variable N is the left-hand side (for any right-hand side w), we add a rule $S_0 \to w$. In the current grammar, we have three such rules: $N \to NL$, $N \to ND$, and $N \to a$, so we add rules $S_0 \to NL$, $S_0 \to ND$, and $S_0 \to a$. As a result, we get the following grammar:

$$N \to NL; N \to ND; L \to a; D \to 0; D \to 1; S_0 \to N; N \to a;$$

$$S_0 \to NL; S_0 \to ND; S_0 \to a$$

Step 2. On this step:

- For each terminal symbol a, we introduce an auxiliary variable V_a and a rule $V_a \to a$.
- Then, in each rule in which the right-hand side has 2 or more symbols and at least one of them is a terminal symbol, we replace each terminal symbol with the corresponding variable.

In our grammar, we have three terminal symbols 0, 1 and a. So, we introduce three new variables V_0 , V_1 , and V_a and three new rules $V_0 \to 0$, $V_1 \to 1$, and $V_a \to a$. In this case, there is no need to replace, so we end up with the following grammar:

$$N \rightarrow NL; N \rightarrow ND; L \rightarrow a; D \rightarrow 0; D \rightarrow 1; S_0 \rightarrow N; N \rightarrow a;$$

$$S_0 \rightarrow NL; S_0 \rightarrow ND; S_0 \rightarrow a; V_0 \rightarrow 0; V_1 \rightarrow 1; V_a \rightarrow a$$

Step 3. At this step, we deal with the rules in which the right-hand side has length 3 or larger. In our grammar, there are not such rules, so the grammar that we obtained after Step 2 is already in Chomsky normal form, i.e., it only has three types of rules:

- rules of the type $S_0 \to \varepsilon$, where S_0 is the starting variable;
- rules of the type $V \to a$, where V is a variable and a is a terminal symbol;
- rules of the type $V \to AB$, where V, A, and B are variables.