Solution to Problem 10

Task. Transform the grammar from Homework 7 into Chomsky normal form.

Solution. The grammar from Homework 7 has the following rules:

\[N \to L; \quad N \to NL; \quad N \to ND; \quad L \to a; \quad D \to 0; \quad D \to 1 \]

Preliminary step. First, we introduce a new starting variable \(S_0 \) and a rule \(S_0 \to N \), where \(N \) is the starting variable of the original grammar. In our grammar, the starting variable is \(I \), so we end up with the following rules:

\[N \to L; \quad N \to NL; \quad N \to ND; \quad L \to a; \quad D \to 0; \quad D \to 1; \quad S_0 \to N \]

Step 0. On this step, we eliminate non-Chomsky rules with right-hand side of length 0, i.e., with right-hand side an empty string and the left-hand side is not a starting variable.

In the above grammar, there are no such rules, so we do not do anything on this step.

Step 1. On this step, we eliminate non-Chomsky rules in which the right-hand side has length 1, i.e., in which the right-hand side is a variable. In the above grammar, there are several such rules, we will eliminate them one by one.

The first such rule is \(N \to L \). To eliminate this rule, for each rule \(L \to w \) that has the variable \(L \) is the left-hand side (for any right-hand side \(w \)), we add a rule \(N \to w \). In the current grammar, we have only one such rule: \(L \to a \), so we add the rule \(N \to a \). As a result, we get the following grammar:

\[N \to NL; \quad N \to ND; \quad L \to a; \quad D \to 0; \quad D \to 1; \quad S_0 \to N; \quad N \to a \]

The next rule that need to be eliminated on this stage is \(S_0 \to N \). To eliminate this rule, for each rule \(N \to w \) that has the variable \(N \) is the left-hand side (for any right-hand side \(w \)), we add a rule \(S_0 \to w \). In the current grammar, we have three such rules: \(N \to NL, N \to ND, \) and \(N \to a \), so we add rules \(S_0 \to NL, S_0 \to ND, \) and \(S_0 \to a \). As a result, we get the following grammar:

\[N \to NL; \quad N \to ND; \quad L \to a; \quad D \to 0; \quad D \to 1; \quad S_0 \to N; \quad N \to a; \quad S_0 \to NL; \quad S_0 \to ND; \quad S_0 \to a \]
Step 2. On this step:

- For each terminal symbol a, we introduce an auxiliary variable V_a and a rule $V_a \rightarrow a$.

- Then, in each rule in which the right-hand side has 2 or more symbols and at least one of them is a terminal symbol, we replace each terminal symbol with the corresponding variable.

In our grammar, we have three terminal symbols 0, 1 and a. So, we introduce three new variables V_0, V_1, and V_a and three new rules $V_0 \rightarrow 0$, $V_1 \rightarrow 1$, and $V_a \rightarrow a$. In this case, there is no need to replace, so we end up with the following grammar:

\[
N \rightarrow NL; \quad N \rightarrow ND; \quad L \rightarrow a; \quad D \rightarrow 0; \quad D \rightarrow 1; \quad S_0 \rightarrow N; \quad N \rightarrow a; \\
S_0 \rightarrow NL; \quad S_0 \rightarrow ND; \quad S_0 \rightarrow a; \quad V_0 \rightarrow 0; \quad V_1 \rightarrow 1; \quad V_a \rightarrow a
\]

Step 3. At this step, we deal with the rules in which the right-hand side has length 3 or larger. In our grammar, there are not such rules, so the grammar that we obtained after Step 2 is already in Chomsky normal form, i.e., it only has three types of rules:

- rules of the type $S_0 \rightarrow \varepsilon$, where S_0 is the starting variable;

- rules of the type $V \rightarrow a$, where V is a variable and a is a terminal symbol; and

- rules of the type $V \rightarrow AB$, where V, A, and B are variables.