
Solution to Homework 11

Task. Use the general algorithm to transform the pushdown automaton from
Problem 6 into a context-free grammar. Show, step-by-step, how the resulting
grammar will generate the word IDII.

Solution. Let us recall how the word IDII is accepted by this automaton:

read I D I I

state s w a1 w w a1 w a2 w f f f
stack $ $ I $ $ I I I I $

$ $ $ I $

$

We start with the state s, we end up in the final state f . Thus, the first rule
we apply if the rule S → Asf ;

S

Asf

The first symbol we push is the dollar sign, this dollar sign is popped at the
end. Thus, we have the following combination of pop=push rules:

����
s ����

ε, ε → $ w- ����
f ����

fε, $ → ε -

In general, we have the two transitions

����
p ����

x, ε → t q ����
r ����

sy, t → ε- -

What do we need to plug in instead of p, q, etc. in the general 2-rule picture to
come up with this particular picture:

� instead of p, we place s;

1



� instead of q, we place w;

� instead of s and t, we place f ;

� instead of x and y, we place ε.

If we make these substitutions in the general rule:

Aps → xAqry,

we get the rule
Asf → εAwfε.

Since concatenation with the empty string does not change anything, this means

Asf → Awf .

Thus, the derivation so far takes the following form:

S

Asf

Awf

We covered how we push the dollar sign and how we pop it. Let us underline
what we have covered:

read I D I I

state s w a1 w w a1 w a2 w f f f
stack $ $ I $ $ I I I I $

$ $ $ I $

$

If we ignore the dollar signs – since we already took care of them – then we see
that we have three intermediate states with the empty stack. So, we need to
use the transitivity rule, which in this case takes the form

Awf → Awa1
Aa1wAwa1

Aa1f .

Thus, the derivation tree takes the following form:

2



S

Asf

Awf
�

���
��

H
HHH

HH

�
�

�

@
@
@

Awa1
Aa1w Awa1

Aa1f

Transition Awa1
. In the first transition from w to a1 we have only one rule,

so we add a fictitious rule to form a pair. We ignore the dollar signed that do
not change:

����
w ����

I, ε → ε a1- ����
a1 ����

a1
ε, ε → ε -

This combination leads to the rule Awa1 → IAa1a1ε, i.e., Awa1 → IAa1a1 .
Here, the remaining transition between a1 and a1 does not include any additional
steps, so we can use the rule Aa1a1

→ ε. So, we get the rule Awa1
→ I.

Transition Aa1w. For the transition between a1 and w, we push I and then
pop I:

����
a1 ����

ε, ε → I w- ����
w ����

wD, I → ε -

So, we have a transition Aa1w → εAwwD, i.e., Aa1w → AwwD. Here, the
remaining transition between w and w does not include any additional steps, so
we can use the rule Aww → ε. So, we get the rule Aa1w → D.

Transition Awa1
. The next transition Awa1

is the same as the first transition
from w to a1,before, so it corresponds to the rule Awa1 → I.

Transition Aa1f . In the last transition Aa1f , we first push I, then pop I:

����
a1 ����

ε, ε → I
w- ����

f ����
f

ε, I → ε -

So, we get the transition Aa1f → εAwfε, i.e., Aa1f → Awf . This takes care of
the second I, so we get:

3



read I D I I

state s w a1 w w a1 w a2 w f f f
stack $ $ I $ $ I I I I $

$ $ $ I $

$

Now, if we ignore the second I, we get an intermediate state a2 with an empty
stack, so we need to use transitivity Awf → Awa2

Aa2f . For Awa2
, there is only

one rule, so we pair it with a fictitious trivial rule:

����
w ����

I, ε → I a2- ����
a2 ����

a2
ε, ε → ε -

So, we get Awa2
→ IAa2a2

ε, i.e., Awa2
→ IAa2a2

. There are no rules for the
transition Aa2a2

, so we get Aa2a2
→ ε and thus, Awa2

→ I.

Finally, for the transition Aa2f , we push and pop the last I by using the
following rules:

����
a2 ����

ε, ε → I w- ����
w ����

fε, I → ε -

Here, we get the rule Aa2f → εAwwε, i.e., Aa2f → Aww. There are no rules for
the transition Aww, so we get Aww → ε and thus, Awa2

→ ε. So, the transition
takes the following form:

S

Asf

Awf
��

���
�

HH
HHH

H

�
�

�

@
@
@

Awa1 Aa1w Awa1 Aa1f

I D I Awf

�
�

�

@
@
@

Awa2
Aa2f

I ε

4


