## Solutions to Homework 3

**Task:** Apply the general algorithm for transforming the finite automaton into a regular language (i.e., a language described by a regular expression) to Automaton B from Problem 1.4. For simplicity, assume that we only have symbols 0, 1, and a. Eliminate first the error state, then the start state, and finally, the state c.

**Solution.** We start with the described automaton:



According to the general algorithm, first we add a new start state ns and a few final state nf, and we add jumps:

- from the old start state to the new start state, and
- from each old final state to the new final state.

As a result, we get the following automaton:



Eliminating the error state. Then, we need to eliminate the intermediate states one by one. Let us start with eliminating the error state e. As a result, for all other states i and j, we get  $R'_{i,j} = R_{i,j} \cup (R_{i,e}R^*_{e,e}R_{e,j})$ . By definition of a sink state, it has no arrows going from it to any other states. Thus, we always have  $R_{e,j} = \emptyset$ . Concatenation with the empty set  $R^*_{e,j}$  is empty set, so we always have  $R_{i,e}R^*_{e,e}R_{e,j} = \emptyset$ . Union of any set with the empty set is that same original set, so we have  $R'_{i,j} = R_{i,j}$ . Thus, we get the following simplified automaton:



Eliminating the start state. First, we draw all possible arrows:



Now, to find expressions to place at all these arrows, we will use the general formula

$$R'_{i,j} = R_{i,j} \cup (R_{i,k}R^*_{k,k}R_{k,j}),$$

where k is the state that we are eliminating, i.e., in this case, the state k = s. By applying this formula, and by using simplification formulas described in the lecture, we get the following results:

$$R'_{ns,c} = R_{ns,c} \cup (R_{ns,s}R^*_{s,s}R_{s,c}) = \emptyset \cup (\Lambda\emptyset^*a) = \emptyset \cup (\Lambda\Lambda a) = \emptyset \cup a = a;$$

$$R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,s}R^*_{s,s}R_{s,nf}) = \emptyset \cup (\Lambda\emptyset^*\emptyset) = \emptyset \cup \emptyset = \emptyset;$$

$$R'_{c,c} = R_{c,c} \cup (R_{c,s}R^*_{s,s}R_{s,c}) = 0 \cup 1 \cup a \cup (\emptyset \dots) = 0 \cup 1 \cup a \cup \emptyset = 0 \cup 1 \cup a;$$

$$R'_{c,nf} = R_{c,nf} \cup (R_{c,s}R^*_{s,s}R_{s,nf}) = \Lambda \cup (\emptyset \dots) = \Lambda \cup \emptyset = \Lambda.$$

Thus, the 3-state a-automaton takes the following form:



Eliminating the state n. Now, all that remains to do is to go from here to the 2-state a-automaton by eliminating the remaining state c:



The final expression is the corresponding expression for  $R'_{ns,nf}$ :

$$R'_{ns,nf} = R_{ns,nf} \cup (R_{ns,c}R_{c,c}^*R_{c,nf}) = \emptyset \cup (a * 0 \cup 1 \cup a)^*\Lambda) = a(0 \cup 1 \cup a)^*\Lambda = a(0 \cup 1 \cup a)^*.$$

**Resulting answer:** The regular expression corresponding to the original automaton is  $a(0 \cup 1 \cup a)^*$ .