
Solutions to Test 2 for CS 3350 Automata

Spring 2023

1–3. Let us consider a finite automaton that checks whether the weather in El
Paso is warm or cold. Let us consider an alphabet consisting of two symbols: f
(for “cold front”), and n (for “no cold front”). This automaton has two states:

� the final state w (for “warm”) and

� the state c (for “cold”).

Transitions are as follows:

� from the state w, f leads to c, while n lead back to w;

� from the state c, f leads back to c, while n leads to w.

This automaton accepts the word nfn.

1. Show how the general algorithm will produce a context-free grammar that
generates all the words accepted by this automaton – and only words
generated by this automaton.

2. On the example of the word nfn accepted by this automaton, show how
the tracing of acceptance of this word by the finite automaton can be
translated into a generation of this same word by your context-free gram-
mar.

3. Show how the word nfn can be represented as uvxyz according to the
Pumping Lemma for context-free grammars.

Solution assuming that the starting state is w. According to the general
algorithm, the corresponding grammar should have two variables W and C, and
the following rules:

W → fC, W → nW, C → fC, C → nW, W → ε

The word nfn is accepted by the finite automaton as follows:

| n | f | n |
w w c w

1

Thus, its derivation takes the following form:

W → nW → nfC → nfnW → nfn.

In terms of a tree, this can be represented as follows:

W
�

�
�

@
@
@

n W
�

�
�

@
@
@

f C
�

�
�

@
@

@
n W

ε

���
���

��

��
����

��

HHH
HHH

HH

HH
HHH

HHH

Here, u = n, v = fn, x = y = z = ε.

2

Solution assuming that the starting state is c. According to the general
algorithm, the corresponding grammar should have two variables W and C, and
the following rules:

W → fC, W → nW, C → fC, C → nW, W → ε

The word nfn is accepted by the finite automaton as follows:

| n | f | n |
c w c w

Thus, its derivation takes the following form:

C → nW → nfC → nfnW → nfn.

In terms of a tree, this can be represented as follows:

C
�

�
�

@
@
@

n W
�

�
�

@
@
@

f C
�

�
�

@
@

@
n W

ε

���
���

��

���
���

��

HHH
HHH

HH

HH
HHH

HHH

Here, u = n, v = fn, x = y = z = ε.

3

4-6. Let us consider the grammar with the starting variable W and the rules
W → nfC, C → n, W → n, and W → ε.

4. Use a general algorithm to construct a (non-deterministic) pushdown au-
tomaton that corresponds to this grammar.

5. Show, step by step, how the word nfn will be accepted by this automaton.

6. Transform this grammar into Chomsky normal form.

Solution to Problem 4.

-���� ����
-ε, ε → $

?
ε, ε → W

n,n → ε
f, f → ε�

s i

w -ε,W → C ����
a1

?ε, ε → f

����
a2� ε, ε → n

� ε, C → n
ε,W → n
ε,W → ε

������
��
fi ε, $ → ε

4

Solution to Problem 5. The word nfn is derived as follows:

W → nfC → nfn;

So, we have the following acceptance by the pushdown automaton:

n f n
s i w a1 a2 w w w w w fi

$ W C f n f C n $

$ $ C f C $ $

$ C $

$

5

Solution to Problem 6.

Preliminary step. We add a new starting variable S0 and a rule S0 → W :

W → nfC, C → n, W → n, W → ε, S0 → W.

Step 0. The only inappropriate rules with right-hand side of length 0 is the
rule W → ε. So, we add the rule S0 → ε:

W → nfC, C → n, W → n, S0 → W, S0 → ε.

Step 1. We eliminate the rule S0 → W by adding the rules S0 → nfC and
S0 → n:

W → nfC, C → n, W → n, S0 → ε, S0 → nfC, S0 → n.

Step 2. We add new variables Vn and Vf , add new rules Vn → n and Vf → f ,
and replace n and f in rules in which the right-hand side has length 2 or more
with, correspondingly, Vn and Vf :

W → VnVfC, C → n, W → n, S0 → ε, S0 → VnVfC, S0 → n,

Vn → n, Vf → f.

Step 3. We replace the rule W → VnVfC with W → VnfC and Vnf → VnVf ;
similarly S0 → VnVfX is replaced with S0 → VnfC:

W → VnfC, Vnf → VnVf , C → n, W → n, S0 → ε, S0 → VnfC, S0 → n,

Vn → n, Vf → f.

This is already Chomsky normal form.

6

7-8. Show, step by step:

7. how the stack-based algorithm will transform the expression 3/(3−1) into
a postfix expression, and then

8. how a second stack-based algorithm will compute the value of this expres-
sion.

Solution. Let us show, step by step, how the above expression is transformed
into the postfix form:

3 / (3 − 1)
3 3 1 − /

/ (−)
/ ((

/ /

Let us now show how this expression will be computed:

3 3 1 − /
3 3 1 2 1

3 3 3
3

7

9-10. Let us consider the following pushdown automaton:

-

���� ����

����

�
��

����
St W

F C

-

�
�

�
�

�
�

�
�

�	 ?

ε, ε → $

f, ε → f

ε, $ → ε

6

n, f → ε

6
f, ε → f

?
n, ε → ε

This pushdown automaton accepts the word nfn. Use the general algorithm to
show how this word will be generated in the corresponding context-free gram-
mar.

Solution. Acceptance of the word nfn by this pushdown automaton has the
form:

n f n
St W W C W F

$ $ f $

$

We end up in the final state F , so first, we use the rule S0 → ASt,F .

Then, the first symbol we push is $, it is popped at the end, so we have the
two rules:

����
St ����

ε, ε → $ W ����
W ����

Fε, $ → ε- -

So, we form the rule ASt,F → ΛAWWΛ, i.e., the rule ASt,F → AWW . This
takes care of the dollar sign. So now, we can ignore the dollar sign and only
consider what happens on top.

We see that in the transition from the first W to the last W , there is an
intermediate state with an empty stack, so we need to use the transitivity rule
AWW → AWWAWW .

8

The first variable AWW describes the transition right after pushing the dollar
sign. In this transition, we read n, and we remain in the state W without
pushing anything or popping anything. Since we are not pushing anything, we
do not have a natural transition to pair with this transition. So, according to
the general algorithm, we pair it with the trivial transition, when we do not
see anything, do not push anything, do not pop anything, and stay in the same
state:

����
W ����

n, ε → ε W ����
W ����

Wε, ε → ε- -

This leads to the rule AWW → nAWWΛ, i.e., the rule AWW → nAWW . After
that, we use the rule AHH → ε that covers a trivial transition.

In the transition corresponding to the second part AWW , the next symbol
we push (and later pop) is f :

����
W ����

f, ε → C C ����
C ����

Wn, f → ε- -

So, we use the rule AWW → fACCn. Finally, we apply the rule ACC → ε.
So, the derivation of the string nfn takes the following form:

St → ASt,F → AWW → AWWAWW → nAWWAWW → nAWW → nfACCn → nfn.

9

