1-2. Let \(L \) be language of all the words that contain equal number of \(A \)'s and \(B \)'s and twice fewer \(C \)'s. Prove that this language is not context-free.

3. The following Turing machine replaces a binary number with 0:
 - start, \(- \) → moving, R (here, \(- \) means blank)
 - moving, 0 → R
 - moving, 1 → R
 - moving, \(- \) → deleting, L
 - deleting, 0 → \(- \), L
 - deleting, 1 → \(- \), L
 - deleting, \(- \) → R, final
 - final, \(- \) → 0, back, L
 - back, \(- \) → halt

Trace it on the example of the word 01. Explain how each step will be represented if we interpret the Turing machine as a finite automaton with two stacks.

4. Arithmetic operations on Turing machines:
 a Design a Turing machine that adds 2 to a binary number.
 b Trace your Turing machine, step-by-step, on the example of the number 3.
 c Why in Turing machines (and in most actual computers) the representation of a binary number starts with the least significant digit?

5. The following finite automaton describes binary strings that start with 0:
 - the starting state \(s \);
 - the final state \(f \) meaning that the first symbol was 0; and
• the error state e meaning that the first symbol was not 0.

Transitions are as follows:

• from the state s, symbol 0 leads to the state f and symbol 1 leads to the state e;
• from the state f, each symbol leads back to f;
• from the state e, each symbol leads back to e.

Use the general algorithm to transform this finite automaton into a Turing machine. Show, step-by-step, how your Turing machine will accept the string 01.

6. Give the formal definition of a feasible algorithm, and an explanation of what practically feasible means. Give two examples different from what we had in class:

• an example of a computation time which is formally feasible, but not practically feasible, and
• an example of a computation time which is practically feasible but not formally feasible.

7. What is P? What is NP? What does it mean for a problem to be NP-hard? NP-complete? Give brief definitions. Give an example of an NP-complete problem: explain what is the input, what is the desired output. Is P equal to NP?

8. Prove that the square root of 12 is not a rational number.

9. Formulate the halting problem. Prove that it is not possible to check whether a given program halts on given data.

10. Formulate Church-Turing thesis. Is it a mathematical theorem? Is it a statement about the physical world?