Automata, Computability, and Formal Languages Spring 2023, Test 3

- 1-2. Let L be language of all the words that contain equal number of A's and B's and twice fewer C's. Prove that this language is not context-free.
- 3. The following Turing machine replaces a binary number with 0:
 - start, \rightarrow moving, R (here, means blank)
 - moving, $0 \to R$
 - moving, $1 \to R$
 - moving, $-\rightarrow$ deleting, L
 - deleting, $0 \rightarrow -$, L
 - deleting, $1 \rightarrow -$, L
 - deleting, $-\rightarrow R$, final
 - final, $\rightarrow 0$, back, L
 - back, $-\rightarrow$ halt

Trace it on the example of the word 01. Explain how each step will be represented if we interpret the Turing machine as a finite automaton with two stacks.

- 4. Arithmetic operations on Turing machines:
 - a Design a Turing machine that adds 2 to a binary number.
 - b Trace your Turing machine, step-by-step, on the example of the number 3.
 - c Why in Turing machines (and in most actual computers) the representation of a binary number starts with the least significant digit?
- 5. The following finite automaton describes binary strings that start with 0:
 - the starting state s;
 - the final state f meaning that the first symbol was 0; and

• the error state e meaning that the first symbol was not 0.

Transitions are as follows:

- from the state s, symbol 0 leads to the state f and symbol 1 leads to the state e;
- from the state f, each symbol leads back to f;
- from the state e, each symbol leads back to e.

Use the general algorithm to transform this finite automaton into a Turing machine. Show, step-by-step, how your Turing machine will accept the string 01.

- 6. Give the formal definition of a feasible algorithm, and an explanation of what practically feasible means. Give two examples different from what we had in class:
 - an example of a computation time which is formally feasible, but not practically feasible, and
 - an example of a computation time which is practically feasible but not formally feasible.
- 7. What is P? What is NP? What does it means for a problem to be NP-hard? NP-complete? Give brief definitions. Give an example of an NP-complete problem: explain what is the input, what is the desired output. Is P equal to NP?
- 8. Prove that the square root of 12 is not a rational number.
- 9. Formulate the halting problem. Prove that it is not possible to check whether a given program halts on given data.
- 10. Formulate Church-Turing thesis. Is it a mathematical theorem? Is it a statement about the physical world?