
Automata, Computability, and Formal Languages

Spring 2023, Solutions to Test 3

1-2. Let L be language of all the words that contain equal number of A’s and
B’s and twice fewer C’s. Prove that this language is not context-free.

Solution: Proof by contradiction. Let us assume that this language is context-
free. Then, by the pumping lemma for context-free grammars, there exists an
integer p such that every word w from this language whose length is at least
p can be represented as w = uvxyz, where len(vy) > 0, len(vxy) ≤ p, and for
every i, we have uvixyiz ∈ L.

Let us take the word w = A2pB2pCp ∈ L, in which first we have A repeated
2p times, then B repeated 2p times, and then C repeated p times. The length of
this word is 2p+2p+p = 5p > p, so this word can be represented as w = uvxyz.

Where is vxy? Since the length of this part does not exceed p, this word
cannot contain three different digits, i.e., A’s, B’s, and C’s – otherwise, it will
have to contain all the B’s between A’s and C’ss – there are 2p of these symbols,
and also at least one of A’s and one of C’s, to the total of more than p. So, we
have the following possible cases:

� vxy is in A’s;

� vxy is between A’s and B’s;

� vxy is in B’s;

� vxy is between B’s and C’s;

� vxy is in C’s.

In the first case, v and y contain only A’s. So, when we go from uvxyz to
uvvxyyz, we add A’s, but we do not add B’s or C’s; thus, the desired balance
between numbers of A’s, B’s, and C’ss is disrupted, and so uvvxyyz ̸∈ L – while
by pumping lemma, we should have uvvxyyz ∈ L. Thus, this case is impossible.

In the second case, v and y contain only A’s and B’s. So, when we go
from uvxyz to uvvxyyz, we add A’s and B’s, but we do not add any C’s; thus,
the desired balance between numbers of A’s, B’s, and C’s is disrupted, and so
uvvxyyz ̸∈ L – while by pumping lemma, we should have uvvxyyz ∈ L. Thus,
this case is impossible.

Similarly, we can prove that the other cases are also not possible. So, none
of the cases is possible, which means that our assumption that the language L
is context-free is wrong.

1



3. The following Turing machine replaces a binary number with 0:

� start, – → moving, R (here, – means blank)

� moving, 0 → R

� moving, 1 → R

� moving, – → deleting, L

� deleting, 0 → –, L

� deleting, 1 → –, L

� deleting, – → R, final

� final, – → 0, back, L

� back, – → halt

Trace it on the example of the word 01. Explain how each step will be repre-
sented if we interpret the Turing machine as a finite automaton with two stacks.

Solution:

Moment 1:

– 1 0 – . . . start

Here the left stack is empty, and the right stack has the following form:

–
1
0

Moment 2:

– 1 0 – . . . moving

Here, the stacks have the following form:

–
1
0

Moment 3:

– 1 0 – . . . moving

Here, the stacks have the following form:

1
–

0

2



Moment 4:

– 1 0 – . . . moving

Here, the stacks have the following form:

0
1
–

–

Moment 5:

– 1 0 – . . . deleting

Here, the stacks have the following form:

1
–

0
–

Moment 6:

– 1 – – . . . deleting

Here, the stacks have the following form:

–
1
–
–

Moment 7:

– – – – . . . deleting

Here, the left stack is empty, and the right stack has the following form:

–
–
–
–

Moment 8:

– – – – . . . final

Here, the stacks have the following form:

–
–
–
–

Moment 9:

3



– 0 – – . . . back

Here, the left stack is empty, and the right stack has the following form:

–
0
–
–

Moment 10:

– 0 – – . . . halt

Here, the stacks did not change.

4



4. Arithmetic operations on Turing machines:

a Design a Turing machine that adds 2 to a binary number.

b Trace your Turing machine, step-by-step, on the example of the number 3.

c Why in Turing machines (and in most actual computers) the representa-
tion of a binary number starts with the least significant digit?

Solution: The idea is to skip the first bit and then to use the algorithm for
adding 1 to a binary number. Here are the rules:

start, – → skip, R
skip, 1 → move, R
skip, 0 → move, R
move, 1 → 0, R
move, 0 → 1, L, back
move, – → 1, L, back
back, 0 → L
back, 1 → L
back, – → halt.

Here is the tracing:

– 1 1 – – – – . . . start

– 1 1 – – – – . . . skip

– 1 1 – – – – . . . move

– 1 0 – – – – . . . move

– 1 0 1 – – – . . . back

– 1 0 1 – – – . . . back

– 1 0 1 – – – . . . back

– 1 0 1 – – – . . . halt

In most actual computers, the representation of a number starts with the least
significant digit, since all arithmetic operations like addition, subtraction, or
multiplication start with the least significant digit. So, if we store the number
the way we write numbers, most significant digits first, computers will have

5



to waste time going through all the digits until they come up with the least
significant digit and start the actual computations. To speed up computations,
representations therefore start with the least significant digits.

The same representation is used for Turing machines, to make them closer
to how actual computers work and thus, make them more realistic.

6



5. The following finite automaton describes binary strings that start with 0:

� the starting state s;

� the final state f meaning that the first symbol was 0; and

� the error state e meaning that the first symbol was not 0.

Transitions are as follows:

� from the state s, symbol 0 leads to the state f and symbol 1 leads to the
state e;

� from the state f, each symbol leads back to f;

� from the state e, each symbol leads back to e.

Use the general algorithm to transform this finite automaton into a Turing
machine. Show, step-by-step, how your Turing machine will accept the string 01.

Solution: This Turing machine will have the following rules:

� start, – → s, R

� s, 0 → f, R

� s, 1 → e, R

� f, 0 → f, R

� f, 1 → f, R

� e, 0 → e, R

� e, 1 → e, R

� s, – → reject

� e, – → reject

� f, – → accept

Tracing:

– 0 1 – – . . . start

– 0 1 – – . . . s

– 0 1 – – . . . f

– 0 1 – – . . . f

– 0 1 – – . . . accept

7



6. Give the formal definition of a feasible algorithm, and an explanation of what
practically feasible means. Give two examples different from what we had in
class:

� an example of a computation time which is formally feasible, but not
practically feasible, and

� an example of a computation time which is practically feasible but not
formally feasible.

Solution: An algorithm A is called feasible if its running time tA(x) on each in-
put x is bounded by some polynomial P (len(x)) of the length len(x) of the input:
tA(x) ≤ P (len(x)). In other words, the algorithm is feasible if for each length
n, the worst-case complexity twA(n) = max{tA(x) : len(x) = n} is bounded by a
polynomial: twA(n) ≤ P (n).

An algorithm is called practically feasible if for every input of reasonable
length, it finished its computations in reasonable time.

Time complexity twA(n) = 102023 is a constant – thus a polynomial, so from
the viewpoint of the formal definition, it is feasible. However, this number is
larger than the number of particles in the Universe, so it is clearly not practically
feasible.

On the other hand, the function exp(10−2023 · n) is an exponential function
and thus, grows faster than an polynomial, but even for largest realistic lengths
n – e.g., for n = 1018 – the resulting value is smaller than 3 and is, thus, perfectly
practically feasible.

8



7. What is P? What is NP? What does it means for a problem to be NP-
hard? NP-complete? Give brief definitions. Give an example of an NP-complete
problem: explain what is the input, what is the desired output. Is P equal to
NP?

Solution: P is the class of all the problems that can be solved in polynomial
time.

NP is the class of all the problems for which, once we have a candidate for
a solution, we can check, in polynomial time, whether it is indeed a solution.

A problem is called NP-hard if every problem from the class NP can be
reduced to this problem.

A problem is called NP-complete if it is NP-hard and itself belongs to the
class NP.

An example of an NP-complete problem is propositional satisfiability:

� given: a propositional formula, i.e., any expression obtained from Boolean
variables by using “and”, “or”, and “not”,

� find: the values of the Boolean variables that makes this formula true.

At present, no one knows whether P is equal to NP. Most computer scientists
believe that these two classes are different.

9



8. Prove that the square root of 12 is not a rational number.

Solution: Let us prove this by contradiction. Let us assume that
√
12 is

a rational number, i.e., that
√
12 = a/b for some natural numbers a and b.

Without losing generality, we can assume that a and b have no common factors
– if they had, we could divide both numerator and denominator by this common
factor.

Squaring both sides of this equality, we get 12 = a2/b2. Multiplying both
sides by b2, we get

a2 = 12 · b2 = 2 · 2 · 3 · b2.

The right-hand side of this equality divides by 3, so the left-hand side a · a · a
must be divisible by 3 as well. This means that one of the factors in the left-
hand side product must be divisible by 3, i.e., that a is divisible by 3. This
means that a = 3p for some natural number p. Substituting a = 3p into the
equality a2 = 2 · 2 · 3 · b2, we conclude that 3 · 3 · p2 = 2 · 2 · 3 · b · b i.e., dividing
both sides by 3, that 3 · p2 = 2 · 2 · b · b.

Now, the left-hand side of this equality divides by 3, so the right-hand side
2 · 2 · b · b must be divisible by 3 as well. This means that one of the factors in
the right-hand side product must be divisible by 3, i.e., that b is divisible by 3.
Thus, a and b have a common factor 3 – but a and b have no common factors.
This contradiction proves that our assumption is wrong, and so

√
12 is not a

rational number.

10



9. Formulate the halting problem. Prove that it is not possible to check whether
a given program halts on given data.

Solution: The halting problem is the problem of checking whether a given
program p halts on given data d. We can prove that it is not possible to have an
algorithm haltChecker(p,d) that always solves this program by contradiction.
Indeed, suppose that such an algorithm – i.e., such a Java program – exists.
Then, we can build the following auxiliary Java program:

public static int aux(String x)

{if(haltChecker(x,x))

(while(true) x= x;}

else{return 0;}}

If aux halts on aux, then haltChecker(aux,aux) is true, so the program aux goes
into an infinite loop – and never halts. On the other hand, if aux does not halt
on aux, then haltChecker(aux,aux) is false, so the program aux returns 0 – and
thus, halts. In both cases, we get a contradiction, which proves that haltChecker
is not possible.

11



10. Formulate Church-Turing thesis. Is it a mathematical theorem? Is it a
statement about the physical world?

Solution: Church-Turing thesis states that any function that can be computed
on any physical device can also be computed by a Turing machine (or, equiva-
lently, by a Java program).

Whether this statement is true or not depends on the properties of the
physical world. Thus, this statement is not a mathematical theorem, it is a
statement about the physical world.

12


