1.1.

1.2. Word Ale

1. Start
2. Read A

3. Read e
4. Read e

The state is p, it is final, so Ale is accepted.
1. Start

2. Read α

3. Read ।

4. Read e

5. Read 1

We end up in the state e which is not final, so the word ael1 is not accepted.
1.3 \(Q = \{s, p, e\} \)
\(\Sigma = \{0, 1, \alpha, A\} \)

\[\delta: \]

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>p</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>e</td>
<td>p</td>
<td>e</td>
</tr>
<tr>
<td>A</td>
<td>p</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

\(q_0 = s \)
\(F = \{p\} \)

1.4. Automaton B:

- \(s \) to \(A \) on \(z \)
- \(A \) to \(s \) on \(\alpha \)
- \(s \) to \(e \) on \(0 \) to \(9 \)
- \(e \) to \(s \) on \(\alpha \) to \(0 \) to \(9 \)