Problem 1. Finite automata and regular languages.

Problem 1a. Design a finite automaton for recognizing words that contain letter a and do not contain letter c. This correspond to students who only have As and Bs and at least one A. Assume that the input strings contain only symbols a, b, and c. The easiest is to have three states:

- the starting state s corresponding to strings that have neither a nor c in them;
- the state f corresponding to strings that contain letter a and do not contain letter c, and
- the state e corresponding to strings that contain letter c.

You just need to describe transitions between these states, and which states are final. Show, step-by-step, how your automaton will accept the word $abba$.

Solution.

- from s, a leads to f, b leads back to s, and c leads to e;
- from f, a and b lead back to f, and c leads to e;
- from e, all three letters lead back to e.

The final state is f. Derivation of $abba$ is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>
Problem 1b. Explain why in most computers binary numbers are represented starting with the lowest possible digit.

Solution. In most actual computers, the representation of a number starts with the least significant digit, since all arithmetic operations like addition, subtraction, or multiplication start with the least significant digit. So, if we store the number the way we write numbers, most significant digits first, computers will have to waste time going through all the digits until they come up with the least significant digit and start the actual computations. To speed up computations, representations therefore start with the least significant digits.
Problem 1c. On the example of the above automaton, show how the word *abba* can be represented as *xyz* in accordance with the pumping lemma.

Here, the first repeating state is *f*:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

So, \(x = a, \ y = b, \) and \(z = ba. \)
Problem 1d. Use a general algorithm to describe a regular expression corresponding to the finite automaton from the Problem 1a. (If you are running out of time, it is Ok not to finish, just eliminate the first state.)

Solution. We start with the described automaton:

![Automaton Diagram]

According to the general algorithm, first we add a new start state ns and a few final state f, and we add jumps:

- from the new start state ns to the old start state, and
- from each old final state to the new final state nf.

As a result, we get the following automaton.

![Automaton Diagram with added ns and nf]

Then, we need to eliminate the three intermediate states s, f, and e one by one. Let us start with eliminating the state e. In general, we have a formula

$$R'_{i,j} = R_{i,j} \cup (R_{i,k} R_{e,k}^* R_{k,j}),$$

where k is the state that we are eliminating. In this case, we have $k = e$, so

$$R'_{i,j} = R_{i,j} \cup (R_{i,e} R_{e,e}^* R_{e,j}).$$

From the state e, we cannot go anywhere, so $R_{e,j} = \emptyset$ for all j. Thus,

$$R'_{i,j} = R_{i,j} \cup (R_{i,e} R_{e,e}^* \emptyset) = R_{i,j} \cup \emptyset = R_{i,j}.$$

Thus, we can simply delete the state e without changing anything else:
Let us then eliminate the state f. Then, we have the following:

\[
\begin{align*}
R'_{ns,s} &= R_{ns,s} \cup (R_{ns,f} R^*_f R_{f,s}) = \Lambda \cup (\emptyset \ldots) = \Lambda \cup \emptyset = \Lambda; \\
R'_{ns,nf} &= R_{ns,nf} \cup (R_{ns,f} R^*_f R_{f,nf}) = \emptyset \cup (\emptyset \ldots) = \emptyset \cup \emptyset = \emptyset; \\
R'_{s,s} &= R_{s,s} \cup (R_{s,f} R^*_f R_{f,s}) = b \cup (a(a \cup b)^* \emptyset) = b \cup \emptyset = b; \\
R'_{s,nf} &= R_{s,nf} \cup (R_{s,f} R^*_f R_{f,nf}) = \emptyset \cup (a(a \cup b)^* \Lambda) = \emptyset \cup (a(a \cup b)^*) = a(a \cup b)^*.
\end{align*}
\]

Thus, the 3-state a-automaton takes the following form:

The final expression is the corresponding expression for $R'_{ns,nf}$:

\[
\begin{align*}
R'_{ns,nf} &= R_{ns,nf} \cup (R_{ns,s} R^*_s R_{s,nf}) = \\
\emptyset \cup (\Lambda b^* a(a \cup b)^*) = \emptyset \cup (b^* a(a \cup b)^*) = \\
b^* a(a \cup b)^*.
\end{align*}
\]

The formula on the previous line is a regular expression corresponding to the original automaton.
Problem 1e-f. The resulting language can be described by a regular expression $b^*a(a \cup b)^*$. Use a general algorithm to transform this regular expression into a finite automaton: first a non-deterministic one, then a deterministic one.

Solution. We start with the standard non-deterministic automata for recognizing the words a and b:

Then, we use the general algorithm for the union to design a non-deterministic automaton for recognizing the language $a \cup b$:

Now, we apply a standard algorithm for the Kleene star, and we get the following non-deterministic automaton for $(a \cup b)^*$:

Now, we also take a standard automaton for the language a, and use the algorithm for concatenation for combine them:
Then, we get an automaton for b^*:

Finally, we again apply the algorithm for concatenation:

To get a deterministic finite automation, first, we enumerate the states:
Then, we get the following deterministic automaton:
Problem 2. Beyond finite automata: pushdown automata and context-free grammars

Problem 2a. Suppose that a student gets paid for each workday. Sometimes, there is a delay in payment, sometimes, the student gets an advance, but at the end, the number of payments \(P \) should be equal to the number of workdays \(W \). For example, sequences \(WWPP \) and \(WPPW \) are fair, while a sequence \(WPW \) is not fair. Prove that the set of all such “fair” sequences is not regular and therefore, cannot be recognized by a finite automaton.

Solution We will prove it by contradiction. Let us assume that the language \(L \) of all fair sequences is regular, and let us show that this assumption leads to a contradiction.

Since this language is regular, according to the Pumping Lemma, there exists an integer \(p \) such that every word from \(L \) whose length \(\text{len}(w) \) is at least \(p \) can be represented as a concatenation \(w = xyz \), where:

- \(y \) is non-empty;
- the length \(\text{len}(xy) \) does not exceed \(p \), and
- for every natural number \(i \), the word \(xy^i z = xy \ldots yz \), in which \(y \) is repeated \(i \) times, also belongs to the language \(L \).

Let us take the word

\[w = W^p P^p = W \ldots WP \ldots P, \]

in which first \(W \) is repeated \(p \) times, then \(P \) is repeated \(p \) times. The length of this word is \(p + p = 2p > p \). So, by pumping lemma, this word can be represented as \(w = xyz \) with \(\text{len}(xy) \leq p \). This word starts with \(xy \), and the length of \(xy \) is smaller than or equal to \(p \). Thus, \(xy \) is among the first \(p \) symbols of the word \(w \) – and these symbols are all \(W \)'s. So, the word \(y \) only has \(W \)'s.

Thus, when we go from the word \(w = xyz \) to the word \(xyyz \), we add \(W \)'s, and we do not add any \(P \)'s. So, in the word \(xyyz \), there are more \(W \)'s than \(P \)'s. Thus, the word \(xyyz \) cannot be in the language \(L \), since by definition \(L \) only contains words which have exactly as many \(W \)'s as \(P \)'s.

On the other hand, by Pumping Lemma, the word \(xyyz \) must be in the language \(L \). So, we proved two opposite statements:

- that this word is not in \(L \) and
- that this word is in \(L \).

This is a contradiction.

The only assumption that led to this contradiction is that \(L \) is a regular language. Thus, this assumption is false, so \(L \) is not regular.
Problem 2b. Use a general algorithm to transform the finite automaton from the Problem 1a into a context-free grammar (CFG). Show, step-by-step, how this CFG will generate the word \textit{abba}.

\textbf{Solution.} According to the general algorithm, the corresponding grammar should have three variables \texttt{S}, \texttt{F}, and \texttt{E}, and the following rules:

\begin{align*}
S & \rightarrow aF, \quad S \rightarrow bS, \quad S \rightarrow cE, F \rightarrow aF, \quad F \rightarrow bF, \quad F \rightarrow cE, \\
E & \rightarrow aE, \quad E \rightarrow bE, \quad E \rightarrow cE, \quad F \rightarrow \varepsilon.
\end{align*}

The word \textit{abba} is accepted by the finite automaton as follows:

\begin{center}
\begin{array}{c|c|c|c|c|}
 & a & b & b & a \\
 s & f & f & f & f \\
\end{array}
\end{center}

Thus, its derivation takes the following form:

\[S \rightarrow aF \rightarrow ab\overline{F} \rightarrow abb\overline{F} \rightarrow abba \overline{F} \rightarrow abba. \]
Problem 2c. For the context-free grammar from the Problem 2b, show how the word *abba* can be represented as *uvwxyz* in accordance with the pumping lemma.

Solution. In terms of a tree, the derivation of the word *abba* can be represented as follows:

Here, \(u = \text{abb}, v = a, x = y = z = \varepsilon \).
Problem 2d. Use a general algorithm to translate the CFG from 2b into Chomsky normal form.

Solution.

Preliminary step. We add a new starting variable S_0 and a rule $S_0 \rightarrow S$:

$$
S \rightarrow aF, \quad S \rightarrow bS, \quad S \rightarrow cE, \quad F \rightarrow aF, \quad F \rightarrow bF, \quad F \rightarrow cE,
$$

$$
E \rightarrow aE, \quad E \rightarrow bE, \quad E \rightarrow cE, \quad F \rightarrow \varepsilon,
$$

$$
S_0 \rightarrow S.
$$

Step 0. We need to eliminate the rule $F \rightarrow \varepsilon$. This means adding the rules $S \rightarrow a, \quad F \rightarrow a, \quad F \rightarrow b$:

$$
S \rightarrow aF, \quad S \rightarrow bS, \quad S \rightarrow cE, \quad F \rightarrow aF, \quad F \rightarrow bF, \quad F \rightarrow cE,
$$

$$
E \rightarrow aE, \quad E \rightarrow bE, \quad E \rightarrow cE,
$$

$$
S_0 \rightarrow S,
$$

$$
S \rightarrow a, \quad F \rightarrow a, \quad F \rightarrow b.
$$

Step 1. We eliminate the rule $S_0 \rightarrow S$ by adding the rules $S_0 \rightarrow aF, \quad S_0 \rightarrow bS, \quad S_0 \rightarrow cE, \quad S_0 \rightarrow a$:

$$
S \rightarrow aF, \quad S \rightarrow bS, \quad S \rightarrow cE, \quad F \rightarrow aF, \quad F \rightarrow bF, \quad F \rightarrow cE,
$$

$$
E \rightarrow aE, \quad E \rightarrow bE, \quad E \rightarrow cE,
$$

$$
S \rightarrow a, \quad F \rightarrow a, \quad F \rightarrow b,
$$

$$
S_0 \rightarrow aF, \quad S_0 \rightarrow bS, \quad S_0 \rightarrow cE, \quad S_0 \rightarrow a.
$$

Step 2. We introduce three new variables $V_a, V_b,$ and V_c, replace $a, b,$ and c in length-2 right-hand sides with $V_a, V_b,$ and V_c, and add rules $V_a \rightarrow a, \quad V_b \rightarrow b,$ and $V_c \rightarrow c$:

$$
S \rightarrow V_aF, \quad S \rightarrow V_bS, \quad S \rightarrow V_cE, \quad F \rightarrow V_aF, \quad F \rightarrow V_bF, \quad F \rightarrow V_cE,
$$

$$
E \rightarrow V_aE, \quad E \rightarrow V_bE, \quad E \rightarrow V_cE,
$$

$$
S \rightarrow a, \quad F \rightarrow a, \quad F \rightarrow b,
$$

$$
S_0 \rightarrow V_aF, \quad S_0 \rightarrow V_bS, \quad S_0 \rightarrow V_cE, \quad S_0 \rightarrow a.
$$

This is already Chomsky normal form.
Problem 2e. Use a general algorithm to translate the CFG from 2b into an appropriate push-down automaton. Explain, step-by-step, how this automaton will accept the word \textit{abba}.

Solution.

The word \textit{abba} is derived as follows:

\[
S \rightarrow aF \rightarrow abF \rightarrow abbaF \rightarrow abba.
\]

So, we have the following acceptance by the pushdown automaton:
Problem 2f. Use the general stack-based algorithms to show:

- how the compiler will transform a Java expression \((5 - 9) \cdot 4\) into inverse Polish (postfix) notation, and
- how it will compute the value of this expression.

Solution. Let us show, step by step, how the above expression is transformed into the postfix form:

\[
\begin{array}{c}
\frac{(5 - 9)}{5} \cdot 4 \\
\frac{9}{-4} \cdot 4 \\
\frac{16}{-4} \\
\end{array}
\]

Let us now show how this expression will be computed:

\[
\begin{array}{cccc}
5 & 9 & - & 4 \\
5 & 9 & -4 & 4 & -16 \\
5 & -4 & -16 \\
\end{array}
\]
Problem 3. Beyond pushdown automata: Turing machines

Problem 3a. In addition to what we discussed in Problem 2a, the employer has also make a deposit to the student’s social security account (S) for each working day. With this in mind, a fair sequence is the one in which we have equal number of W’s, P’s and D’s. For example, the sequences WPDWPD and WWPPDD are fair, while the sequence WWPPD is not. Prove that the language of all fair sequences is not context-free and therefore, cannot be recognized by a pushdown automaton.

Solution: Proof by contradiction. Let us assume that this language is context-free. Then, by the pumping lemma for context-free grammars, there exists an integer \(p \) such that every word \(w \) from this language whose length is at least \(p \) can be represented as \(w = uvxyz \), where \(\text{len}(vy) > 0 \), \(\text{len}(vxy) \leq p \), and for every \(i \), we have \(uv^i xy^i z \in L \).

Let us take the word \(w = W^p P^p D^p \in L \), in which first we have \(W \) repeated \(p \) times, then \(P \) repeated \(p \) times, and then \(D \) repeated \(p \) times. The length of this word is \(p + p + p = 3p > p \), so this word can be represented as \(w = uvxyz \).

Where is \(vxy \)? Since the length of this part does not exceed \(p \), this word cannot contain \(W \)’s, \(P \)’s, and \(D \)’s – otherwise, it will have to contain all the symbols \(P \) between \(W \)’s and \(D \)’s – there are \(p \) of these symbols, plus at least one symbol \(W \) and at least one symbol \(D \) to the total of at least \(p + 2 \), while by pumping lemma \(\text{len}(vxy) \leq p \). So, we have the following possible cases:

- \(vxy \) is in \(W \)’s;
- \(vxy \) is between \(W \)’s and \(P \)’s;
- \(vxy \) is in \(P \)’s;
- \(vxy \) is between \(P \)’s and \(D \)’s; or
- \(vxy \) is in \(D \)’s.

In the first case, \(v \) and \(y \) contain only \(W \)’s. So, when we go from \(uvxyz \) to \(uvxyyz \), we add \(W \)’s, but we do not add \(P \)’s and \(D \)’s; thus, the desired balance between numbers of \(W \)’s, \(P \)’s, and \(D \)’s is disrupted, and so \(uvxyyz \notin L \) – while by pumping lemma, we should have \(uvxyyz \in L \). Thus, this case is impossible.

In the second case, \(v \) and \(y \) contain only \(W \)’s and \(P \)’s. So, when we go from \(uvxyz \) to \(uvxyyz \), we add \(W \)’s and \(P \)’s, but we do not add any \(D \)’s; thus, the desired balance between numbers of \(W \)’s, \(P \)’s, and \(D \)’s is disrupted, and so \(uvxyyz \notin L \) – while by pumping lemma, we should have \(uvxyyz \in L \). Thus, this case is impossible.

Similarly, we can prove that the other three cases are also not possible. So, none of the cases is possible, which means that our assumption that the language \(L \) is context-free is wrong.
Problem 3b-c. Use a general algorithm to design a Turing machine that accepts exactly all sequences accepted by a finite automaton from Problem 1a. Show, step-by-step, how this Turing machine will accept the word *abba*. Describe, for each step, how the state of the tape can be represented in terms of states of two stacks.

Solution: This Turing machine will have the following rules:

- **Start state**:

 - **Start state, − → s, R**

 - **s, a → f, R**

 - **s, b → s, R**

 - **s, c → e, R**

 - **f, a → f, R**

 - **f, b → f, R**

 - **f, c → e, R**

 - **e, a → e, R**

 - **e, b → e, R**

 - **e, c → e, R**

 - **s, − → reject**

 - **f, − → accept**

 - **e, − → reject**

Tracing: Moment 1.

```
  - a b b a ...
  start
```

Here, the left stack is empty, the right stack has the following form:

```
  ...
  a
  b
  b
  a
```

Moment 2:

```
  - a b b a ...
  s
```

Here, the stacks have the following form:
Moment 3:

Here, the stacks have the following form:

Moment 4:

Here, the stacks have the following form:

Moment 5:

Here, the stacks have the following form:

Moment 6:

Here, the stacks have the following form:

The stacks remain the same.
Problem 3d-e. Design Turing machines for computing $a - 2$ in unary and in binary codes. Trace both Turing machines for $a = 5$.

Solution: unary case. The rules are:

- start, $-$ → R, moving
- moving, 1 → R
- moving, $-$ → L, erasing1
- erasing1, 1 → $-$, L, erasing2
- erasing2, 1 → $-$, L, back
- back, 1 → L
- back, $-$ → halt

Tracing:

- \[\begin{array}{ccccccccc}
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 _ & 1 & 1 & 1 & 1 & 1 & - & \ldots \\
 \end{array} \]

Solution: binary case. The rules are:

- start, $-$ → R, skip
- skip, 0 → moving, R
- skip, 1 → moving, R
- moving, 0 → 1, R
- moving, 1 → 0, L, back
- back, 1 → L
- back, $-$ → halt

18
Here is tracing:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

start

skip

moving

moving

back

back

back

halt
Problem 4. *Beyond Turing machines: computability*

Problem 4a. Formulate Church-Turing thesis. Is it a mathematical theorem? Is it a statement about the physical world?

Solution: Church-Turing thesis states that any function that can be computed on any physical device can also be computed by a Turing machine (or, equivalently, by a Java program).

Whether this statement is true or not depends on the properties of the physical world. Thus, this statement is not a mathematical theorem, it is a statement about the physical world.
Problem 4b. Prove that the halting problem is not algorithmically solvable.

Solution: The halting problem is the problem of checking whether a given program p halts on given data d. We can prove that it is not possible to have an algorithm $\text{haltChecker}(p,d)$ that always solves this problem by contradiction. Indeed, suppose that such an algorithm – i.e., such a Java program – exists. Then, we can build the following auxiliary Java program:

```java
public static int aux(String x)
{if(haltChecker(x,x))
  (while(true) x= x;)
else{return 0;}}
```

If aux halts on aux, then $\text{haltChecker(aux,aux)}$ is true, so the program aux goes into an infinite loop – and never halts. On the other hand, if aux does not halt on aux, then $\text{haltChecker(aux,aux)}$ is false, so the program aux returns 0 – and thus, halts. In both cases, we get a contradiction, which proves that haltChecker is not possible.
Problem 4c. Not all algorithms are feasible, but, unfortunately, we do not have a perfect definition of feasibility. Give a current formal definition of feasibility and give two examples:

- an example of an algorithm’s running time which is feasible according to the current definition but not practically feasible, and
- an example of an algorithm’s running time which is practically feasible but not feasible according to the current definition.

These examples should be different from what we studied in class and what is posted in solutions.

Solution: An algorithm A is called feasible if its running time $t_A(x)$ on each input x is bounded by some polynomial $P(len(x))$ of the length $len(x)$ of the input: $t_A(x) \leq P(len(x))$. In other words, the algorithm is feasible if for each length n, the worst-case complexity $t^w_A(n) = \max\{t_A(x) : len(x) = n\}$ is bounded by a polynomial: $t^w_A(n) \leq P(n)$.

Time complexity $t^w_A(n) = 10^{200}$ is a constant – thus a polynomial, so from the viewpoint of the formal definition, it is feasible. However, this number is larger than the number of particles in the Universe, so it is clearly not practically feasible.

On the other hand, the function $\exp(10^{-200} \cdot n)$ is an exponential function and thus, grows faster than an polynomial, but even for largest realistic lengths n – e.g., for $n = 10^{18}$ – the resulting value is smaller than 3 and is, thus, perfectly practically feasible.
Problem 4d. Briefly describe what is P, what is NP, what is NP-hard, and what is NP-complete. Is P equal to NP?

Solution: P is the class of all the problems that can be solved in polynomial time.

NP is the class of all the problems for which, once we have a candidate for a solution, we can check, in polynomial time, whether it is indeed a solution.

A problem is called NP-hard if every problem from the class NP can be reduced to this problem.

A problem is called NP-complete if it is NP-hard and itself belongs to the class NP.

At present, no one knows whether P is equal to NP. Most computer scientists believe that these two classes are different.
Problem 4e. Give an example of an NP-complete problem: what is given, and what we want to find.

Solution. An example of an NP-complete problem is propositional satisfiability:

- given: a propositional formula, i.e., any expression obtained from Boolean variables by using “and”, “or”, and “not”,
- find: the values of the Boolean variables that makes this formula true.
Problem 4f. Give definitions of a decidable (recursive) language and of a semi-decidable (recursively enumerable, Turing-recognizable) language. Give an example of a decidable language and an example of a language which is semi-decidable but not decidable.

Solution. A language L is called \textit{decidable} if there exists an algorithm (or, equivalently, a Turing machine) that:

- given a word,
- returns “yes” or “no” depending on whether this word belongs to this language or not.

An example is the language of all even numbers.

A language is called \textit{semi-decidable}, \textit{Turing-recognizable}, or \textit{recursively enumerable} if there exists a Turing machine that:

- given a word w,
- returns “yes” if and only if the word w belongs to the language L.

An example of a semi-decidable language which is not decidable is the set of all the pairs (p, d) for which the program p halts on data d.
