Solution to Homework Problem 17

Task. Use the general algorithm to transform a finite automaton B from Homework 1.4 – as simplified in Homework 3, into a Turing machine. Show step-by-step, on an example of a word Aaa, how this word will be processed by your Turing machine.

Automaton B from Homework 1.4 as simplified in Homework 3: reminder. This automaton has three states: s, n, and r; s is the starting state, n is the only final state. The transitions are as follows:

- from the state s, symbol r leads to r, every other symbol leads to n;
- from the state n, symbol r leads to r, every other symbol leads to n;
- from the state r, every symbol leads back to r.

Solution. Here are the rules for the Turing machine:

- start, $-$ \rightarrow R, s
- s, r \rightarrow R, r
- s, a \rightarrow R, n
- s, A \rightarrow R, n
- n, r \rightarrow R, r
- n, a \rightarrow R, n
- n, A \rightarrow R, n
- r, r \rightarrow R, r
- r, a \rightarrow R, r
- r, A \rightarrow R, r
- s, $-$ \rightarrow reject
- n, $-$ \rightarrow accept
- r, $-$ \rightarrow reject

Tracing.

<table>
<thead>
<tr>
<th></th>
<th>$-$</th>
<th>A</th>
<th>a</th>
<th>a</th>
<th>$-$</th>
<th>\ldots</th>
<th>start</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-$</td>
<td>A</td>
<td>a</td>
<td>a</td>
<td>$-$</td>
<td>\ldots</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>A</td>
<td>g</td>
<td>a</td>
<td>$-$</td>
<td>\ldots</td>
<td>n</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
\vdash A & a & a & \ldots & n \\
\vdash A & a & a & \ldots & n \\
\vdash A & a & a & \ldots & \text{accept}
\end{array}
\]