$S \rightarrow SS \rightarrow L = D_i S \rightarrow a = D_i S \rightarrow$
\[a = 2_i S \rightarrow a = 2_i L = L_i \rightarrow a = 2_i b = L_i \rightarrow \]
\[a = 2_i b = a_i \]
We start in the start state
We don't have a choice: to get to f, we push $ and go to state i.

Stack $ $
Again no choice we push S
stack S

S
The first rule we use was $S \rightarrow SS$, so we pop S, push S, then go to a_1, push S again.
Now, we use the rule $S' \rightarrow L = D i$
Now, we use the rule
\[\varepsilon, L \rightarrow \alpha \]
Terminal symbol a is on top of stack, the only way to delete it is to use rule $a, a \rightarrow \varepsilon$
Terminal symbol = on top of stack so we use the rule $i = \rightarrow \epsilon$
We use the rule $D \rightarrow 2$
Two terminal symbols on top of stack, so we use rules $2, 2 \rightarrow \varepsilon$ and $i, i \rightarrow \varepsilon$.
Now, we use the rule
\[S \rightarrow L = L_i \]
We use rule $L \rightarrow b$
Terminal symbols on top of stack, so we use rules:

\[
\begin{align*}
\text{\$} & \rightarrow \text{\$} \\
\text{\$} & \rightarrow \text{\$}
\end{align*}
\]
Terminal symbols on top of stack, so we use rules
\[a_i, a \rightarrow \epsilon \]
\[i, i \rightarrow \epsilon \]
We finished reading all symbols, so we go to \(f \). We are in \(f \) with empty stack, so the word is accepted.
Graphical description of all transitions:

read	$	i	w	a_1	w	a_2	a_3	ay	W	W	W	W	W	W	a = 2					
state	S	i	w	a_1	W	a_2	a_3	ay	W	W	W	W	W	W	W	W				
stack	$	S	$	S	S	$	S	S	$	D	D	D	L	a	=	D	i	s	s	$

<table>
<thead>
<tr>
<th>read</th>
<th>$</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>a</th>
<th>i</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>a_5</td>
<td>a_6</td>
<td>a_7</td>
<td>W</td>
</tr>
<tr>
<td>stack</td>
<td>i</td>
<td>L</td>
<td>L</td>
<td>=</td>
<td>L</td>
<td>b</td>
<td>L</td>
<td>L</td>
<td>a</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

Where $ represents the start symbol and $ represents the accept symbol.