Solution to Homework Problem 24

Homework problem 24. Prove that the cubic root of 24 is not a rational number.

Solution. Let us prove it by contradiction. Let us assume that $\sqrt[3]{24}$ is a rational number, i.e., $\sqrt[3]{24} = a/b$ for some integers a and b.

If the numbers a and b have a common factor, then we can divide both a and b by this factor and get the same ratio. Thus, we can always find a and b that have no common factors.

Let us now get a contradiction.

- Multiplying both sides of the above equality by b, we get $\sqrt[3]{24} \cdot b = a$.
- Cubing both sides, we get $24 \cdot b^3 = a^3$, i.e., $2^3 \cdot 3 \cdot b^3 = a^3$.
- The left-hand side of this equality is divisible by 3, so the right-hand side $a^3 = a \cdot a \cdot a$ must also be divisible by 3.
- Since 3 is a prime number, this means that one of the factors in the product $a \cdot a \cdot a \text{i.e.}$, number a is divisible by 3, i.e., $a = 3 \cdot p$ for some integer p.
- For $a = 3 \cdot p$, we have $a^3 = (3 \cdot p) \cdot (3 \cdot p) \cdot (3 \cdot p) = 3^3 \cdot p^3$.
- Substituting $a^3 = 3^3 \cdot p^3$ into the formula $2^3 \cdot 3 \cdot b^3 = a^3$, we get $2^3 \cdot 3 \cdot b^3 = 3^3 \cdot p^3$.
- Dividing both sides by 3, we get $2^3 \cdot b^3 = 3^2 \cdot p^3$.
- The right-hand side of this equality is divisible by 3, so the left-hand side $2^3 \cdot b^3 = 2 \cdot 2 \cdot 2 \cdot b \cdot b \cdot b$ must also be divisible by 3.
- Thus, one of the factors in the right-hand side is divisible by 3.
- Since 2 is not divisible by 3, thus b is divisible by 3.
- So, a and b have a common factor 3 which contradicts to the fact that a and b have no common factors.

This contradiction shows that our original assumption – that $\sqrt[3]{24}$ is a rational number – is wrong. The statement is proven.