Solution to Problem 7

Problem. Prove that the following function is mu-recursive:

```c
int j = 1;
while(!(a + j <= m))
    {j++;}
```

Solution. According to the general algorithm, first, we write a similar problem, but with a for-loop:

```c
int j = 1;
for(i = 1; i <= b; i++)
    {j++;}
```

This program can be translated into primitive recursion as follows:

\[
\begin{align*}
 j(0) &= 1; \\
 j(n + 1) &= j(n) + 1.
\end{align*}
\]

A general primitive recursion defines a function \(h(n_1, \ldots, n_k, m) \) of \(k + 1 \) variables. In our case, we have a function of 1 variable, so \(k + 1 = 1 \) and \(k = 0 \). For \(k = 0 \), the general primitive recursion has the form

\[
\begin{align*}
 j(0) &= f; \\
 j(n + 1) &= h(n, j(n)).
\end{align*}
\]

Here, \(f(0) = 0 \) and \(h = \sigma \circ \pi_2^2 \), so

\[
j(m) = PR(0, \sigma \circ \pi_2^2).
\]

As the number of iterations, we take the smallest \(n \) for which \(a + j(n) \leq m \), i.e., \(\mu n. (a + j(n) \leq m) \). Thus, the desired function has the form

\[
j(\mu n. (a + j(n) \leq m)).
\]