Solution to Problem 14

Problem. Sketch an example of a Turing machine for implementing primitive recursion (i.e., a for-loop), the way we did it in class, on the example of the following simple for-loop

\[
v = a;
\text{for}(\text{int } i = 1; i \leq b; i++)
\{v = v + i;\}
\]

No details are required, but any details will give you extra credit.

Solution. In mathematical terms, the above for-loop takes the following form:

\[
v(a, 0) = a;
\]
\[
v(a, m + 1) = v(a, m) + m + 1.
\]

After we rename the function \(v\) into \(h\) and the parameter \(a\) into \(n_1\) and, we get the standard form:

\[
h(n_1, 0) = n_1;
\]
\[
h(n_1, m + 1) = h(n_1, m) + m + 1.
\]

In this standard form, we have \(f(n_1) = n_1\), i.e., \(f = \pi_1\), and \(g(n_1, m, h) = h + m + 1\), i.e., \(g = \text{add}(\pi_3, \sigma(\pi_3))\).

Let us follow the general scheme for computing primitive recursion. Suppose that we have Turing machines computing the functions \(f(n_1) = n_1\) and \(g(n_1, m, h) = h + m + 1\). Let us show how to build a Turing machine that compute the desired function \(h = PR(f, g)\). We start with the state

\[- - n_1 - x - - - \text{start}\]

and we want to end up in the state

\[- - h(n_1, x) - - - \text{halt}\]

This can be done as follows. First, we copy \(x\), add 0, then copy the number \(n_1\), and move the head into the cell right before the second copy of \(n_1\):

\[- - n_1 - x - x - 0 - - n_1 - - - \]
Then, we apply the Turing machine f. Since a Turing machine never goes beyond the cell where it starts, it will compute the value

$$h(n_1, 0) = f(n_1) = n_1,$$

so we will have the following state of the tape:

$$\begin{array}{cccccccc}
- & n_1 & x & x & x & 0 & - & h(n_1, 0) & - & \cdots \\
\end{array}$$

Now, we copy n_1 and 0 before h, and get

$$\begin{array}{cccccccc}
- & n_1 & x & x & x & 0 & - & n_1 & 0 & - & h(n_1, 0) & - & \cdots \\
\end{array}$$

Then, we apply the Turing machine for computing the function g, and get $h(n_1, 1) = g(n_1, 0, h(n_1, 0))$. So, the tape has the form:

$$\begin{array}{cccccccc}
- & n_1 & x & x & x & 0 & - & h(n_1, 1) & - & \cdots \\
\end{array}$$

After that, we decrease the second copy of x by 1, increase 0 by 1, and get the following:

$$\begin{array}{cccccccc}
- & n_1 & x & x & x - 1 & 1 & - & h(n_1, 1) & - & \cdots \\
\end{array}$$

and we repeat a similar procedure.

In general, for each $m \leq x$, we get the following state of the tape:

$$\begin{array}{cccccccc}
- & n_1 & x & x & x - m & m & - & h(n_1, m) & - & \cdots \\
\end{array}$$

Then, we copy n_1 and m before h, and get

$$\begin{array}{cccccccc}
- & n_1 & x & x & x - m & m & - & n_1 & m & - & h(n_1, m) & - & \cdots \\
\end{array}$$

Now, we apply the Turing machine for computing the function g, and get

$$h(n_1, m + 1) = g(n_1, m, h(n_1, m)).$$

So, the tape has the form:

$$\begin{array}{cccccccc}
- & n_1 & n_2 & x & x & x - m & m & - & h(n_1, m + 1) & - & \cdots \\
\end{array}$$

Then, we check whether $x - m = 0$. If $x - m > 0$, we decrease $x - m$ by 1, increase m by 1, and get the following:
and we repeat a similar procedure.

Once we get \(x - m = 0 \) i.e., \(m = x \), the state of the tape takes the form

\[
\begin{array}{cccccc}
- & n_1 & - & x & - & x - (m + 1) & - & m + 1 & - & h(n_1, m + 1) & - & \ldots
\end{array}
\]

Here, we have \(k + 4 = 5 \) numbers:

- the number \(n_1 \), and
- four numbers \(x, 0, x \), and \(h(n_1, n_2, x) \).

The desired value \(h(n_1, x) \) is 5-th out of 5, so we can get it by applying the Turing machine computing the corresponding projection \(\pi_5^5 \):

\[
\begin{array}{cccc}
- & h(n_1, x) & - & \ldots
\end{array}
\]

This is exactly what we wanted.

In this construction, we use composition, adding 1, subtracting 1, copying, and projection. We know how to do all this on a Turing machine, so indeed we can thus build a Turing machine for computing the function \(PR(f, g) \).